中原大學102學年度 碩士班 入學考試

102／3／2 15：30～17：00 電機工程學系電子電路組

誠實是我們珍視的美德，
我們喜愛「拒絕作弊，堅守正直」的你！

科目：電子學
$\mathrm{v} \square$ \square 可使用計算機，惟僅限不具可程式及多重記憶者

（共 2 頁第 1 頁）

\square 不可使用計算機

Fig． 1
1．For the standard npn and pnp transistors shown in Fig． 1 the following parameters will be used：
npn：$I_{S}=10^{-14} A, \beta=200, \mu=5000 ;$ pnp：$I_{S}=10^{-14} A, \beta=50, \mu=2000$ ；
except Q_{13}, Q_{19} ，and Q_{20} whose saturation currents are respectively
$I_{S 13 A}=0.25 \times 10^{-14} A, I_{S 13 B}=0.75 \times 10^{-14} A$ ，and $I_{S 19}=I_{S 20}=3.0 \times 10^{-14} \mathrm{~A}$ ．
Referring to Fig．1，please specify（i）the DC analysis of the output stage with the transistors $Q_{13 A}$ ，and Q_{16} to Q_{20} ，（10\％）（ii）the small signal analysis of the output stage，（12\％）（iii）the reason why the usage of the middle capacitor 30 pF ，（ 10% ）（iv） the reason why the usage of Q_{16} and Q_{17} for the output response given by Q_{19} and $Q_{20},(10 \%)(v)$ the reason why the usage of the load capacitor $C_{L},(4 \%)(v)$ the reason why the connection of the base and the collector of Q_{11} for a current mirror，（6\％）（vi）the reason why the connected node of the two bases of the transistors Q_{3} and Q^{4} is like a grounded node，and the terminal a－b is like an open circuit，for a small signal analysis，（6\％）（vii）the reason why the base of Q_{6} is like a grounded node when we would like to find R_{06} from the collector of Q_{6} ，（4\％）（viii） the reason why the emitter of Q_{4} is in series with the $r_{e 2}$ of Q_{2} to the ground when we would like to find R_{04} from the collector of $Q_{4},(4 \%)$ and（ix）the reason why $\mathrm{i}_{\text {out } 2}=\mathrm{i}_{015},(4 \%) .(70 \%)$
2. Please (i) do the circuit analysis to find the $\mathrm{V}_{0} /\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$ of the operational amplifier-based circuit shown in Fig. 2 if the three operational amplifiers are operated in active region (15\%); and (ii) decide the polarities of the two input terminals of an operational amplifier shown in Fig. 2 when the three operational amplifiers are operated in active region (15\%). (30\%)

Fig. 2

