
中原大學 102 學年度 碩士班 入學考試 
3月 2日 10:00~11:30  

科目： 計算機數學                              （共 2 頁 第 1 頁） 

□可使用計算機，惟僅限不具可程式及多重記憶者    不可使用計算機 

 

1. Determine whether each of the following statements is True or False.   (10%) 

  (每題答對得 2分、答錯扣 2分，最多倒扣至此大題為 0分止。) 

(1) The null space of a matrix A is the set of all solutions of equation Ax = 0. 

(2) Any vector set {v1, …, vp} in R
n
 is linearly dependent if p < n. 

(3) An m × n matrix A has orthonormal columns if and only if A
T
A = I. 

(4) Let A be an n × n matrix, A is invertible if and only if det(A) = 0. 

(5) Let A be an n × n matrix, A is invertible if and only if Ax = 0 has only the trivial 

solution. 

2. Determine the values of ‘a’ and ‘b’ such that the system of linear equations 
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  (1) has no solution. a, b = ?                 (5%) 

(2) has infinite solutions. a, b = ?                  (5%) 

(3) has an unique solution. a, b = ?                (5%) 

3. Given a matrix A =
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(1) Find the eigenvalues of A.           (5%) 

(2) A
20

 = ?               (5%) 

4. Let v1 =
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, and {v1, v2, v3} is an orthogonal set. 

(1) Determine the values of a, b, c.          (5%) 

(2) Find the orthogonal projection of y onto span{v1, v2, v3}.     (5%) 

5. Find the inverse of following matrix A.             (5%) 
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誠實是我們珍視的美德， 
我們喜愛「拒絕作弊，堅守正直」的你！ 

資訊工程學系 
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科目： 計算機數學                              （共 2頁 第 2頁） 

□可使用計算機，惟僅限不具可程式及多重記憶者    不可使用計算機 

 

6. Determine whether each of the following statements is True or False.    (10%) 

  (每題答對得 2分、答錯扣 2分，最多倒扣至此大題為 0分止。) 

(1) If the universe of discourse is the set of real numbers, xy(xy = 1). 

(2) {x}⊆B − A if A = {x, y} and B = {x, {x, z}}. 

(3) For any integer n, if n is not divisible by 2 or 3, n
2
-1 must be divisible by 24. 

(4) If ac  bc (mod m), then a  b (mod m). 

(5) There is a tree with degrees 4, 2, 2, 2, 2, 1, 1, 1, 1. 

7. Fill in the blanks in the following statements.      (3 points for each, 15%) 

 There are   (1)   functions from A to B if A = {x, y} and B = {x, {x, z}}. 

 Let S={(1,2),(2,4),(3,1),(4,3)} be a relation on {1,2,3,4}, then S
6 

=   (2)  . 

 3
565

 mod 140 =   (3)   . 

 There are   (4)   distinct bit strings of length six with no four consecutive 0s. 

 A forest that consists of 6 trees and 55 vertices must have   (5)   edges.  

8. Write down the recursive definitions of the following sets. 

Example: The set of all bit strings of even length. (Let  be the empty string.) 

Recursive definition: (Base case): S. 

(Recursive step): if wS, then 00w, 01w, 10w, 11wS. 

(1) The set of all bit strings of even length that start with 1.              (5%) 

(2) The set of all bit strings that have more 0s than 1s.                  (5%) 

9. Derive the closed form of a simple function that generates the terms of an infinite 

sequence beginning with integers 3, 6, 11, 18, 27, 38, 51, 66, 83, 102...    (5%) 

10. Imagine that you have 16 coins, one of which is a lighter counterfeit (偽幣), and a 

free-beam balance (秤). No scale of weight is marked. To find the counterfeit coin, 

(at least) how many times of weighing are needed? Explain your answer.   (5%) 

11. How many non-isomorphic un-rooted trees are there with four vertices? Draw 

these trees.                                                    (5%) 

 

誠實是我們珍視的美德， 
我們喜愛「拒絕作弊，堅守正直」的你！ 

資訊工程學系 


