	中原大學 102 學年度 碩	士班 入學考試
102/3/2	10:00~11:30 電子工程學系光電半導體組	誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!
科目:	電磁學	(共1頁 第1頁)
□可使用	目計算機,惟僅限不具可程式及多重記憶者	■不可使用計算機

-. In the simple lossy medium of conductivity σ , permittivity ε and permeability μ :

1). Directly write down the Maxwells' equations for two time-varying fields \vec{E} and \vec{H} by considering charge source ρ . (8%)

2). Prove that four equations are inter-dependent and further-more resulted in a continuity equation from the Faradays' and general Amperes' law, respectively. (12%).

3). Derive the Lenzs' law for obtaining an electromotive force V_{emf} related with magnetic flux Ψ from the Faradays' law. (5%)

4). For simplicity, a uniform plane wave of the angular frequency ω propagates along z –direction in the lossy and source-free medium ($\rho = 0$). Derive the Helmholtz's differential wave equation for the complex electric field \overline{E} (8%) with indicating complex propagation constant γ (2%)

5). By the way, verify the discharge (decaying) process by using continuity equation, $\rho(t) = \rho_0 \cdot e^{\frac{t}{\tau_r}}$, with

 $\tau_r = \frac{\varepsilon}{\sigma}$ and initial charge density ρ_0 . (5%)

=. A conducting sphere (electrode) of radius a is located in an external uniform electric

field $\vec{E} = \hat{z}E_0, (E_0 = const.)$:

1). Employ what equation (2%) to solve the electric potential expressed as $V(r,\theta) = -E_0[1-(\frac{a}{r})^3]r \cdot \cos\theta$ at any

point $P(r, \theta)$ outside the sphere.

2).Identify that electric flux lines are always normal to conducting surface.(3%) Meantime, find the surface charge density $\rho_s(\theta)$ induced on the conducting surface of sphere. (5%)

3). Solve the induced electric field \vec{E}_i at the center of the sphere. (10%)

 \equiv . For one-sided abrupt-p⁺n-diode of semiconductor permittivity ε_s , doping concentrations n_A and n_D in p⁺ and n regions, respectively ($n_A >> n_D$):

1). Solve the electric profile E(x) in the n-depletion region ($0 \le x \le x_n$). (10%)

2). Derive the built-in potential (or potential barrier height) V_{bi} at thermal equilibrium. (10%)

□. Perfect electric conducting (PEC) interconnection ($\sigma_c \rightarrow \infty$) is deposited onto the oxide-dielectric layer of thickness d=50 nm and relative permittivity $\varepsilon_r = 4$ for attaining a characteristic impedance $Z_0 = 50\Omega$ of microstrip transmission line in IC-design :

1). Derive two distributed elements per unit length C' and L' for parameters ε and μ , respectively. (6%)

2). Evaluate the width w of microstrip-line. (10%)

3). Finally, calculate the propagating speed v_p of the extremely high frequency digital signal via transmission

line. (4%)