中原大學 102 學年度 碩士班 入學考試

102/3/2 13:30 ~ 15:00 應用數學系數學組

應用數學系數學組(在職生)

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!

科目: 高等微積分

(共1頁第1頁)

□可使用計算機,惟僅限不具可程式及多重記憶者

不可使用計算機

- I. (40分) Determine each of the following statements is true or false. Explain briefly your answers.
 - (1) If $f:(-1,1) \to \mathbb{R}$ is differentiable at 0, then

$$\lim_{h \to 0} \frac{f(h) - f(-h)}{h} = f'(0).$$

- (2) If both A and B compact sets in \mathbb{R}^k , then the set $A+B=\{x+y:x\in A \text{ and } y\in B\}$ is also compact.
- (3) Suppose $f:(a-1,a+1) \to \mathbb{R}$ and $g:(A-1,A+1) \to \mathbb{R}$ satisfy:

$$\lim_{x \to a} f(x) = A \text{ and } \lim_{y \to A} g(y) = B.$$

Then $\lim_{x\to a} g(f(x)) = B$.

- (4) If $n \in \mathbb{N}$ and $f(x) = x^n$, then f is uniformly continuous on [0,1].
- (5) If $n \in \mathbb{N}$ and $f_n(x) = x^n$, then the sequence $\{f_n\}$ converges uniformly on [0,1].
- II. (12 \mathcal{D}) Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Show that T is uniformly continuous on \mathbb{R}^n .
- III. (12 \mathcal{G}) Suppose that $f:[-2,2] \to \mathbb{R}$ is a continuous function. Prove that

$$\lim_{h \to 0} \int_{-1}^{1} |f(x+h) - f(x)| dx = 0.$$

IV. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \sqrt{|xy|} \ .$$

- (1) (8 \Re) Find the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the origin (0,0).
- (2) (12 %) Is f differentiable at (0,0)?
- V. (10 $\mbox{$\frac{1}{10}$}$) Suppose that $\{a_n\}$ is a sequence in $\mbox{$\mathbb{C}$}$ and that $\sum_{n=1}^{\infty} |a_n|^2$ converges. Prove that the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges absolutely.
- VI. (6分) State each of the following well-known theorem.
 - (1) Heine-Borel Theorem
 - (2) Weierstrass M-Test