元智大學 102 學年度研究所 碩士班 招生試題卷

系(所)别:

電機工程學系碩

士班

組列: 控制工程組

科目: 控制系統

用紙第 / 頁共 / 頁

●不可使用電子計算機

(42%) Consider a system described by the differential equation:

$$y(t)'' - y(t)' - 2y(t) = u(t)$$

where y(t) and u(t) are input and output of the system, respectively.

- (a) (6%) Please find the transfer function of the system.
- (b) (6%) What are the poles of the system? Is the system stable?
- (c) (6%) Please find y(t) when y(0)' = 0, y(0) = 1 and u(t) = 0.
- (d) (6%) Please write the system in state-space form by choosing state variables: $x_1(t) = y(t)$ and $x_2(t) = y(t)'$.
- (e) (6%) Show that the system is controllable and observable.
- (f) (6%) Determine the estimator gain $L = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$ to place the estimator error poles at -2 and -3.
- (g) (6%) Use the estimator in (f) to construct a state feedback controller, u(t) = r(t) + Kx= $r(t) + [k_1 \quad k_2]x$, and to place the poles of the system at $-1 \pm j$.
- 2. (a) (8%) Please express Y in terms of R and D when the signal flow graph of the system is:

(b) (8%) Let input D = 0, and set system parameters $G_1 = \frac{1}{s^3}$, $G_2 = \frac{(k-1)}{s}$, $G_3 = 1$, $G_4 = \frac{1}{s^3}$

 $H_1 = 1$, $H_2 = 2$ and $H_3 = 3$. Please determine the range of k to ensure the stability of the system.

- 3. (24%) Please choose the correct statements:
 - (a) PD controller can improve the relative stability of the closed-loop system.
 - (b) PD controller usually can increase the bandwidth of the closed-loop system.
 - (c) PI controller is a low-pass filter.
 - (d) PI controller can improve the steady-state error of the closed-loop system.
 - (e) PD controller can reduce the maximum overshoot of the step response of the closed-loop system.
 - (f) PI controller will degrade the relative stability of the closed-loop system.
- 4. (18%) A unit feedback system with $G(s) = \frac{4}{s(s+4)}$ is shown below.

- (a) (6%) Let $G_c(s)$ a proportional controller, i.e., $G_c(s) = k$. Please find k such that the steady state error for the unit ramp input is 0.01.
- (b) (6%) Please sketch the Bode plot of $G_c(s)G(s)$ obtained in (a).
- (c) (6%) If we want to increase the phase margin of the system, what kind of compensator should be chosen (phase lead compensator or phase lag compensator)?

