碩士班 元智大學 102 學年度研究所 招生試題卷

漁訊工程學系項 系(所)別: 超訊 超別: 通訊組 士班

科目: 工程數學

用纸第 / 頁共 之 頁

●不可使用電子計算機

- 1. (8%) (Probability Theory) With your own words, please:
 - (a) Define Event space. (2%)
 - (b) Define Random variable. (3%)
 - (c) Explain Bayes' theorem. (3%)
- 2. (6%) Consider the experiment where a fair die is rolled twice. Verify that the event of getting a "I" the first time the die is rolled and the event of getting a "2" the second time are independent.
- 3. (8%) Give two CDFs (cumulative distribution functions) to show that "Two random variables with the same first and second moments can have different distributions".
- 4. (12%) The number of hits at a Web in any 10-second interval is a Poisson random variable with variance 5.
 - (a) What is the probability that there will be no hits in a 2-second interval? (6%)
 - (b) What is the probability that there are no more than two hits in an interval of one second? (6%)
- 5. (16%) Suppose Y is a continuous random variable uniformly distributed over [-1, 4] and $Z = Y^2$.
 - (a) Find the CDF of Z. (8%)
 - (b) Find the second moment of Z. (8%)
- 6. (8%) Please show that

$$\det(\mathbf{I} + \mathbf{A}\mathbf{A}^H) = \det(\mathbf{I} + \mathbf{A}^H\mathbf{A})$$

where I is an $n \times n$ identity matrix, A is an $n \times n$ square matrix, and 'det' is the operation of taking the determinant.

元智大學 102 學年度研究所 碩士班 招生試題卷

意調工程學系額 系(所)別: 士班 紅別: 遺訊組

科目: 工程數學

用纸第 之 頁共 ≥ 頁

●不可使用電子計算機

7. (15%) Please find the inversion of matrix A using three methods that you have learned.

$$\mathbf{A} = \begin{bmatrix} a_{11} & b_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

where a_{11} , a_{21} , a_{22} , and b_{12} are constant values with $a_{11} \neq 0$, and $|A| \neq 0$.

- 8. (15%) Please answer the following questions:
 - (a) What's a Hermitian matrix? Given an example. (5%)
 - (b) What are the characteristics of the eigenvalues and eigenvectors of a Hermitian matrix? Based on your example of a Hermitian matrix in (a), please confirm that the eigenvalues and eigenvectors of that Hermitian matrix do have those characteristics. (10%)
- 9. (12%) Please use the following column vectors to construct a set of orthonormal vectors.

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$