碩士班 元智大學 102 學年度研究所 招生試題卷

通訊工程學系碩 系(所)別: 組別: 微波組 士班

科目: 電磁學

用紙第 / 頁共 2 頁

●不可使用電子計算機

- 1. (Total 60%) A uniform plane wave originating in lossless dielectric medium 1 ($\varepsilon_1 = 16\varepsilon_0$), which occupies the half-space region of $z \le 0$, is incident normally on a plane interface with a lossy dielectric medium 2 ($\varepsilon_2 = 2\varepsilon_0 - j2\sqrt{3}\varepsilon_0$), which occupies the half-space region of $z \ge 0$. The operating frequency of the plane wave is $\frac{1}{2\pi} \times 3 \times 10^8$ Hz. Assuming the incident magnetic field intensity to be $\underline{H} = \underline{y}_0 \frac{1}{30\pi} e^{-jk_0 z}$,
 - a) find the propagating vector of the transmitted wave in medium 2. (10%)
 - b) find the general solutions for the reflected electric field in the region $z \leq 0$ (Assume the magnitude of the reflected electric field intensity is E_{r0} , where E_{r0} is a real constant). (10%)
 - c) find the general solutions for the transmitted magnetic field intensity in the region $z \ge 0$ (Assume the magnitude of the transmitted magnetic intensity is H_{10} , where H_{10} is a real constant). (10%)
 - d) determine the reflection and transmission coefficients at the boundary z = 0, (10%)
 - using cosine reference, find the time-domain instantaneous expression of the total electric field intensity in medium 1 ($z \le 0$). (10%)
 - f) find the locations of the occurrence of the minimum of |E| in medium 1 (z \leq 0). (10%)
- 2. (Total 16%) Write down the following:
 - a) The fundamental postulates for electrostatics. (4%)
 - b) The mathematical expression (in its integral form) for Gauss's Law. (2%)
 - c) The Maxwell's equations. (8%)
 - d) The mathematical expression for Ampere's Law. (2%)
- 3. (Total 24%) Choose the correct answer(s):
 - 1) If two vectors \underline{A} and \underline{B} are parallel to each other, $\underline{A} /\!/ \underline{B}$, which of the following are true? (3%) (a) The absolute value of inner product of \underline{A} and \underline{B} is maximum; (b) $\underline{A} \cdot \underline{B} = 0$; (c) $\underline{A} \times \underline{B} = 0$; (d) $\underline{A} + \underline{B} = 0$ $\underline{B} = 1$.
 - 2) Which of the following statements are true? (3%) (a) The area of the parallelogram spanned by two vectors \underline{A} and \underline{B} is $|\underline{A} \times \underline{B}|$; (b) If $\underline{A} \cdot \underline{B} =$ $\underline{A} \cdot \underline{C}$ then $\underline{B} = \underline{C}$; (c) If $\underline{A} \times \underline{B} = \underline{A} \times \underline{C}$ then $\underline{B} = \underline{C}$; (d) If $\underline{A} \cdot \underline{B} \times \underline{C} = 0$ then the three vectors \underline{A} , \underline{B} and C lie in the same plane.
 - 3) Which of the following are true? (3%)

(a)
$$\nabla \times (\nabla V) = 0$$
; (b) $\int_{V} (\nabla \cdot \underline{A}) dv = \int_{C} \underline{A} \cdot d\underline{l}$; (c) $\nabla \cdot (\nabla \times \underline{A}) = 0$; (d) $\int_{C} (\nabla \times \underline{A}) \cdot d\underline{s} = \int_{C} \underline{A} \times d\underline{l}$

- 4) A small circular loop with radius b is centered at the origin and carrying a current I in the ϕ -direction. For an observation point located at a distance r from the origin (r>>b), which of the following are true? (3%)
 - (a) The magnetic vector potential \underline{A} due to the current-carrying loop is inversely proportional to r^2 ;
 - (b) The magnetic flux density \underline{B} due to the current-carrying loop is inversely proportional to r^2 ;
 - (c) The magnetic flux density \underline{B} due to the current-carrying loop is zero at any points on the z-axis;
 - (d) The magnetic flux density \underline{B} due to the current-carrying loop is in the z-direction at any points

元智大學 102 學年度研究所 碩士班 招生試題卷

第(所)別: 通訊工程學系頓 組別: 微波組 士班

科目: 電磁學

用纸第2 頁共2 頁

●不可使用電子計算機

on the z-axis.

- 5) In rectangular coordinate system, two point charges +Q, and -Q locate at (0,0,d/2) and (0,0,-d/2) on z-axis, respectively. Such a set of two charges can be treated as the electric dipole. For an observation point located at a distance r from the origin (r>>d), which of the followings are true?
 - (a) The electric field intensity \underline{E} due to the system of charges is inversely proportional to r^3
 - (b) The scalar electric potential $\mathcal V$ due to the system of charges is inversely proportional to r;
 - (c) The potential is zero everywhere in the x-y plane;
 - (d) The total work required to hold the two charges in place is zero.
- 6) A lossless transmission line of 50Ω characteristic impedance is terminated with a load impedance of $Z_L\!=\!30\Omega.$ The SWR of the transmission line is: (3%) (a)1/4; (b) 3/5; (c) 5/3; (d) 1.5.
- 7) A 50Ω transmission line shows a SWR of 2. One of the voltage maxima along the line is a half-wavelength away from the load. The load impedance is: (3%)(a)100 Ω ; (b) 150 Ω ; (c) 75 Ω ; (d) 50 Ω .
- 8) A 40 Ω coaxial cable with dielectric constant 4 is inserted between the load with Z_L = 32 Ω and the source with $Z_S = 50\Omega$. What is the shortest length of the cable such that the load is perfectly matched to the source at 0.1 GHz? (3%) (a)0.5m; (b) 1m; (c) 0.75m; (d)0.375m.