元智大學 102 學年度研究所 碩士班 招生試題卷

通訊工程學系碩 系(所)別: 微波組

科目: 電子學

用紙第 / 頁共 ≥ 頁

₩不可使用電子計算機

1. Assume a constant-voltage mode ($D_{on} = 0.7 V$) for the diodes. (a) Plot the output voltage waveform of a full-wave rectifier as shown in Fig.1 with a sine wave input signal . 7% (b) Explain how this circuit works. 7% 14%

Fig.1

2. Design a self-biased common-emitter amplifier as shown in Fig.2 for voltage gain $A_v=36.5$. Assume $V_{CC}=1.8$ V, $I_C=2$ mA, $I_S=5\times 10^{-16}$ A, $\beta=100$, $V_A=\infty$. C_1 and C_2 are blocking capacitors. (a) Determine the required value of R_C and R_B . 6% (b) Calculate V_{CB} , V_{BB} and I_B . 6% (c) Plot the small signal equivalent circuit that neglects R_B . 6% (Hint. $V_{BE} = V_T \ln(I_C \, / \, I_S)$, ln(10) = 2.303, ln(2) = 0.693 and $V_T = 26 mV$

3. Consider the circuit as shown in Fig.3, where a source follower (M_I and I_I) precedes a common-gate stage (M_2 and R_D). If the transconductance $g_{ml}=g_{m2}$ and λ =0 (λ is the channel-length modulation coefficient) (a) Find the overall voltage gain. 6% (b) Determine the input and output impedance. 6% (c) Plot the small signal equivalent circuit. 6%

P149

元智大學 102 學年度研究所 碩士班 招生試題卷

系(所)別: **通訊工程學系領** 無別: 微波組 士班

科目: 電子學

用紙第 → 頁共 → 頁

●不可使用電子計算機

4. The CMOS operational amplifier shown in Fig. 4 has the following device geometries (in μm). (20%)

Transistor	Q_1	- Q2	Q3	04	Q ₅	06	07	Og
W/L	20/0.5	20/0.5	5/0.5	5/0.5	40/0.5	10/0.5	40/0.5	40/0.5

 $\text{Assume $I_{RSF}=100\mu\text{A},$$$$$$$$V_{th}=0.5\text{V},$$$$$$V_{tp}=-0.5\text{V},$$$$$$\mu_{n}C_{ox}=100\mu\text{A/V}^{2},$$$$$$$$$$$$$\mu_{D}C_{ox}=50\mu\text{A/V}^{2},$$$$$$$$$$V_{DD}=V_{SS}=2.5\text{V},$$$$$$$$$$ $|V_A|=10 {
m V}$ for all devices. Find I_D , $|V_{OV}|$, g_m and r_o for all devices (12%). Also find the open-loop voltage gain in linear scale (8%).

Fig. 4

- If an amplifier has the transfer function as $T(s) = \frac{10s}{(1+s/10^2)(1+s/10^3)}$, please plot its magnitude Bode plot. (10%)
- 6. A series-shunt feedback amplifier is shown in Fig. 5. Find: (20%)
 - (a) The basic amplifier gain A and the feedback factor β . (10%)
 - (b) The feedback gain A_f and the voltage gain V_o/V_s . (5%)
 - (c) The input resistance $R_{\rm in}$ and output resistance $R_{\rm out}$ (5%)

Fig. 5 P150

102150