元智大學 102 學年度研究所 碩士班 招生試題卷

条(所)别:

士班

資訊工程學系碩 組別: 不分組 科目: 離散數學

用紙第 | 頁共 | 頁

●不可使用電子計算機

Not	ation:	
	\mathbb{Z}^+	The set of positive integers
	N	The set of natural numbers (including 0)
	$(G \circ F)(x)$	The composition of two functions $G(x)$ and $F(x)$
gcd(a, b)		The greatest common divisor of two positive integers a and b
	lcm(a,b)	The least common multiple of two positive integers a and b
-	填充題(每	格 5 分, 共 55 分)
1.	Let $F: \mathbb{N} \to \mathbb{R}$	$\mathbb{Z}^+, \ F(x) = \frac{d}{dx}G(x), \text{ and } G: \mathbb{N} \to \mathbb{Z}^+, \ G(x) = 3x^2 + 5x + 1.$
	A. Is $F(x)$	a one-to-one (or injective) function? (yes or no)
	B. Is $F(x)$	an onto (or surjective) function? (yes or no)
	C. A tight (as good as possible) lower (big- Ω) bound of $F(x)$ is	
	D. A tight (as good as possible) upper (big-0) bound of $(G \circ F)(x)$ is	
2.	Let K_n denotes the complete undirected graph with total n vertices $(n \in \mathbb{Z}^+)$. A. Please draw K_6 .	
	B. By removing appropriate edges from K_n , one can obtain a spanning tree of K_n . The number of different edges that should be removed is	
		to connect K_n and K_m $(m \in \mathbb{Z}^+)$ into K_{n+m} , the number of different edges that e additionally drawn is
3.	For $a, b, c, d \in \mathbb{Z}^+$, it is known that $lcm(a, b) = a$, $lcm(b, c) = b$, and $gcd(c, d) = d$.	
	A. $lcm(c,d) = $	
	B. $gcd(a, a)$	<i>t</i>) =
4.	Consider a co	omplete n-ary tree T of height h $(n, h \in \mathbb{Z}^+, n \ge 2)$. For $l \in \mathbb{Z}^+, l \le h$,
	A. The num	ber of ancestors of a vertex in T at level I is
	B. The num	ber of descendants of a vertex in T at level l is
=	、問答題(每	題 15 分,共 45 分)
1,		$n \in \mathbb{Z}^+$ and $m > 1$, prove that If $a^2 \not\equiv bc \pmod m$, then $(a \not\equiv b \pmod m) \lor$
	33	od m)). Please explain your answer in detail.
	[Hint: If a d	irect proof is difficult, try other proof techniques, such as contraposition.]
2.	Consider n distinct vertices. If all the n vertices must be applied to construct a graph, how many different simple undirected graphs can be obtained? Please explain your answer in detail. [Hint: This problem is related to combinations without repetition and permutations with repetition.]	
3.	-	ted (undirected) graph $G = (V, E)$, the maximum spanning tree $T = (V', E')$ of G
	is defined as	s the spanning tree of G whose sum of edge weights is the maximum among all the ses of G . Please briefly describe an algorithm (with pseudo-code) to find T . problem is similar to finding the minimum spanning tree of G .]