碩士班 招生試題卷 元智大學 102 學年度研究所

機械工程學系碩 系(所)別: 加別: 甲組

科目: 熱力熱傳學

用紙第 (頁共 2 頁

●不可使用電子計算機

- 1. In the absence of any friction, can a heat engine have an efficiency of 100%? Explain. (5%)
- 2. Which of the object could not be modeled as thermal energy reservoirs (a) ocean, (b) lake, (c) kitchen, (d) river? Explain. (5%)
- 3. Difference between Immediate surroundings and Environment. (5%)
- 4. (a) Definition of COP_R and COP_{HP} for <u>Refrigerator</u> and <u>Heat Pump</u>, respectively? (5%) (COP = coefficient of performance)
- (b) Prove COPHP = COPR + 1 (10%)
- 5. During the isothermal heat rejection process of a Carnot heat engine, the working fluid experiences an entropy change (Δ S) of -0.8 kJ/K. If the heat sink is 95°C, determine (a) the amount of heat transfer (5%), (b) entropy change of the sink (5%), (c) the total entropy change for this process(5%).

6. Determine the power required to raise a 500-kg elevator car from initial position of 20 m to 100 m in 20 s (g = 9.8 m/s^2). (5%)

102030

碩士班 招生試題卷 元智大學 102 學年度研究所

機械工程學系碩 系(所)別: 相級別: 甲組

科目: 熱力熱傳學

用紙第 → 頁共 ン 頁

●不可使用電子計算機

- 7. (a). Please describe the physical mechanisms of conduction, convection and radiation, and then also write their rate equations. 5%
- (b) What is a thermal contact resistance? 5%
- (c) Please write heat equation in Cartesian coordinates, with three dimensions, heat generation and unsteady. 5%
- 8. (20%) For flow of a liquid metal through a circular tube, the velocity and temperature profile at a particular axial location may be approximated as being uniform and parabolic, respectively. That is, $\mathbf{u}(\mathbf{r})$ = C_1 and T(r) - T_S = C_2 [1- $(r/r_0)^2$], where C_1 and C_2 are constants. What is the values of the Nusselt number Nu_D at this location?
- 9. (a). Define the following no-dimensional parameters and their physical interpretation, Re, Gr, Ja, Nu, Sh. 5%
- (b). For forced convection over a flat plate, what is the critical parameter and value to characterize the laminar or turbulent convection?