元智大學 102 學年度研究所 碩士班 招生試題卷

養(所)別: 機械工程學系

組別: 丙組

科目: 工程數學

用紙第 / 頁共 乙 頁

●不可使用電子計算機

1. Using the method of variation of parameters to solve the differential equation. (16 %)

 $y'' - \frac{4}{x}y' + \frac{4}{x^2}y = x^2 + 1$, x > 0

2. Using the method of Laplace Transformation to solve the initial value problem of y(t).

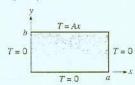
(17%)

 $y'' + 4y' + 3y = e^t$ with y(0) = 0 , $\frac{dy}{dt}\Big|_{t=0} = 2$

- 3. Given a curve C: $F(t) = \cosh t \vec{t} + \sinh t \vec{j}$. (13 %)
 - (a) Find a tangent vector $\vec{r}'(t)$ and the corresponding unit tangent vector $\vec{u}(t)$. (5%)
 - (b) Find $\vec{r}'(t)$ and $\vec{u}(t)$ at the given point $P: \left(\frac{5}{3}, \frac{4}{3}, 0\right)$. (5 %)
 - (c) Find the tangent at P. (3 %)
- 4. What kind of conic section (or pair of straight lines) is given by the quadratic form $4x_1x_2 + 3x_2^2 = 1$? Transform it to principal axes. Express $\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$ in terms of the new coordinate vector $\mathbf{y}^T = \begin{bmatrix} y_1 & y_2 \end{bmatrix}$. (10%)
- 5. Using Green's theorem, evaluate the line integral $\oint_C \bar{F}(\bar{r}) \cdot d\bar{r}$ counterclockwise around the boundary C of the region R, where $\bar{F} = \left[\frac{e^y}{x}, e^y \ln x + 2x\right]$, $R: 1 + x^4 \le y \le 2$. (10%)

102037

碩士班 招生試題卷 元智大學 102 學年度研究所


機械工程學系碩 系(所)別: 大班

科目: 工程數學

用紙第 2 頁共 2 頁

●不可使用電子計算機

6. A two-dimensional rectangular plate is subjected to the boundary conditions shown as below. Derive an expression for the steady state temperature distributions T(x,y) with solving the heat conduction equation. (17 %)

The heat conduction equation is:

$$\frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} = 0$$

Please find the solution in sin, cos, sinh, cosh series functions by the method of separation variables.

7. There is a partial differential equation of one dimensional wave equation to modeling vibrating string. The equation, boundary and initial conditions are following.

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \text{ , } u(0,t) = 0 \text{ , } u(l,t) = 0 \text{ for all time.}$$

The initial profile of the string is,

$$f(x) = \begin{cases} \frac{2k}{l}x, when \ 0 < x < i/2, \\ \frac{2k}{l}(l-x), when \cdots i/2 < x < l \end{cases}$$

initial velocity is zero, g(x) = 0.

Please find the solution in sin, cos series functions by the method of separation variables. (17%)