碩士班 招生試題卷 元智大學 102 學年度研究所

作學工程與材料 系(所)別: 化學工程與材料 組別: 不分組-選考 B 科學學系碩士班

用紙第 / 頁共 / 頁

●可使用現行『國家考試電子計算器規格標準』規定第二類之計算機

- Mark "Truth" or "False" for the following statements, and explain why? (40%; 4% each)
 - The entropy change for a perfect gas expanding isothermally and reversibly from V_i to V₅. is the same for the gas expanding isothermally and freely between the same two volume.
 - (2) The equilibrium constant of an exothermic reaction decreases with an increase in temperature.
 - (3) The reaction rate varies steeply with temperature for the reaction having higher activation energy.
 - (4) The chemical potential of the liquid solvent increases as a result of the presence of a solute.
 - (5) For constant quantity of macromolecule dissolved in solvent, the higher the molar masses the lower osmotic pressure it produces.
 - (6) The Gibbs energy of reaction: CO(g) + 1/2 O₂(g) → CO₂(g), decreases with increasing temperature.
 - (7) For the Daniel cell Zn(s)|ZnSO4(aq)||CuSO4(aq)||Cu(s), the cell potential increases with increasing concentration of CuSO₄(aq).
 - (8) At low concentrations of added NaBr(s), the solubility of the AgCl(s) is increased.
 - (9) The half-life of a first-order reaction lengthens as the concentration of reactant falls.
 - (10) The pK_a of the weak acid is equal to the pH half-way to the stoichiometric point of the titration of a weak acid with a strong base.
- II. For the Langmuir isotherm, the free gas and the monolayer adsorbed gas are in dynamic equilibrium: $A_{(g)} + M_{(surface)} \stackrel{\text{to}}{=} AM_{(surface)}$ with rate constant k_a for adsorption and k_d for desorption. Derive the Langmuir isotherm $\theta = \frac{Kp}{1+Kp}$ for the variation of the fractional coverage θ with pressure at a chosen temperature where θ depends on the pressure p of the overlying gas and the equilibrium constant K equals to k_a/k_d . At constant temperature, various adsorbed gas volume V according to different pressures p fits the Langmuir isotherm. How to obtain V_{∞} the volume corresponding to complete coverage and the equilibrium constant *K*? (15%)
- III. Derive the Clapeyron equation: $\frac{dP}{dT} = \frac{\Delta_{vap} S}{\Delta_{vap} V}$ for the liquid-vapour boundary and estimate the typical size of the effect of increasing pressure by 0.1 atm on the boiling point of a liquid. (15 %) (Hint: using the Trouton's rule and the perfect gas law; where P denotes pressure, T temperature, $\Delta_{\text{vap}} S$ and $\Delta_{\text{vap}} V$ for entropy change and volume change during vaporization, respectively)
- IV. The reaction $A + B \rightarrow P$ is first-order in each of two reactants A and B. Show that the rate law: v = k[A][B] and $kt = \frac{1}{[B]_0 - [A]_0} \ln \frac{[B]/[B]_0}{[A]/[A]_0}$, where $[A]_0$ and $[B]_0$ denote the initial
- concentration of reactants A and B, respectively. (15 %) V. An ideal gas expands from initial volume V_i to final volume V_f . Calculate the changes ΔU , Qand W for the gas (in terms of n, T, V_i and V_f) under the following process: (1) free expansion into vacuum; (2) adiabatic expansion starts at temperature T_0 ; (3) isothermal expansion starts at temperature T_0 . (15%; 5% each)

P19

102019