元智大學 102 學年度研究所 碩士班 招生試題卷

系(所)剂: 化學工程與材料

化學工程與材料 組別: 不分組-選考 B 科學學系碩士班 科目: 普通化學

用紙第 / 頁共 Z 頁

●可使用現行『國家考試電子計算器規格標準』規定第二類之計算機

A. Selective questions (4 pts each, total 60 pts)

- Calculate the mass of aluminum that occupies the same volume as 66.7 g of cobalt. The density
 of cobalt is 8.90 g/cm³ and the density of aluminum is 2.71 g/cm³.
 - a) $2.77 \text{ g; b)} 20.3 \text{ g; c)} 1.61 \times 10^3 \text{ g; d)} 0.362 \text{ g; e)} 0.00457 \text{ g}$
- How many electrons does the ion ⁵⁹₂₇Co²⁺ have?
 - a) 25; b) 27; c) 29; d) 32; e) 59
- A given hydrocarbon is burned in the presence of oxygen gas and is converted completely to
 water and carbon dioxide. The mole ratio of H₂O to CO₂ is 1.125:1.000. The hydrocarbon could
 be
 - a) CH_4 ; b) C_2H_2 ; c) C_2H_6 ; d) C_3H_4 ; e) C_4H_9
- 4. A student is given a sample in lab that contains one of the ions listed below. After adding a few drops of AgNO₃ solution to a portion of the unknown sample, the student got a greyish precipitate. After adding a few drops of Mg(NO₃)₂ solution to another portion of the unknown sample, the student got a black precipitate. Based on these observations, the only possible ion in this student's sample is
 - a) Cl^+ ; b) $C_2H_3O_2^-$; c) F^- ; d) S^{2-} ; e) SO_4^{2-} ;
- 5. A mixture consisting of 0.130 mol N₂, 0.041 mol O₂, 0.100 mol CH₄, and an unknown amount of CO₂ occupies a volume of 8.90 L at 25°C and 1.09 atm pressure. How many moles of CO₂ are there in this sample?
 - a) 0.126 mol; b) 4.46 mol; c) 2.25 mol; d) 0.729 mol; e) 0.397 mol
- How much heat is released at constant pressure if 48.1 mL of 0.741 M silver (I) nitrate is mixed with 51.4 mL of 0.563 M potassium chloride?
 AgNO₃(aq) + KCl(aq) → AgCl(s) + KNO₃(aq); ΔH° = -65.5 kJ
 - a) -48.5 kJ; b) -36.9 kJ; c) -4.23 kJ; d) -1.90 kJ; e) -2.33 kJ
- 7. What is the frequency of a photon having a wavelength of 602.5 nm? ($c=3.00\times10^8~\text{m/s}$, $h=6.63\times10^{-36}~\text{J}\cdot\text{S}$)
 - a) $9.09 \times 10^{26} \,\text{Hz}$; b) $3.30 \times 10^{-37} \,\text{Hz}$; c) $4.98 \times 10^{-4} \,\text{Hz}$;
 - d) $3.30 \times 10^{-19} \, \text{Hz}$; e) $4.98 \times 10^{14} \, \text{Hz}$
- 8. Rank the following ions in order of increasing first ionization energy: O2-, Mg2+, F-, Na*.
 - $a) \quad O^{2-} < Mg^{2+} < F^- < Na^+\;; \quad b) \quad Mg^{2+} < O^{2-} < Na^+ < F^-\;; \quad c) \quad O^{2-} < F^- < Na^+ < Mg^{2+}$
 - $d) \quad Mg^{2+} \leq Na^{+} \leq F^{-} \leq O^{2-}; \quad e) \quad O^{2-} \leq F^{-} \leq Mg^{2+} \leq Na^{+}$

102020

元智大學 102 學年度研究所 碩士班 招生試題卷

作學工程與材料 系(所)別: 科學學系碩土班 和學學系碩土班

科目: 普通化學

用紙第 乙頁共 ≥ 頁

●可使用現行『國家考試電子計算器規格標準』規定第二類之計算機

9. Which of the following is the Lewis dot structure for the bromide ion?

a) $\begin{bmatrix} \mathbf{S}\mathbf{r} \end{bmatrix}^{T}$; b) $\begin{bmatrix} \mathbf{i}\ddot{\mathbf{g}},\mathbf{c} \end{bmatrix}^{T}$; c) $\begin{bmatrix} \ddot{\mathbf{B}}\mathbf{r} \end{bmatrix}^{T}$; d) $\begin{bmatrix} \mathbf{i}\ddot{\mathbf{g}},\mathbf{c} \end{bmatrix}^{T}$; e) $\begin{bmatrix} \dot{\mathbf{S}}\mathbf{r} \end{bmatrix}^{T}$

10. Which of the following molecules is nonpolar?

a) ClF_3 ; b) PF_3 ; c) PF_5 ; d) SF_4 ; e) CH_2F_2

11. Which of the following pure substances has the lowest normal boiling point?

a) NH_3 ; b) H_2Se ; c) H_2Te ; d) H_2O ; e) H_2S

12. A sulfuric acid solution that is 65.0% H2SO4 by mass has a density of 1.55 g/mL at 20°C. What is the molarity of sulfuric acid in the solution?

a) 3.5 M; b) 6.9 M; c) 10.3 M; d) 12.2 M; e) 15.7 M

13. A suggested mechanism for the decomposition of ozone is

 $O_3 = \frac{k_1}{k_{-1}} O_2 + O$ fast equilibrium

 $O + O_3 \xrightarrow{k_2} 2O_2$ slow step

When the concentration of ozone is doubled and the concentration of oxygen is doubled, the

a) remains the same; b) decreases; c) increases by a factor of 2

d) increases by a factor of 4; e) increases by a factor of 8.

 When cobalt chloride is added to pure water, the Co²⁺ ions hydrate. The hydrated form then reacts with the CIT ions to set up the equilibrium shown here:

 $Co(H_2O)_6^{2+} + 4Cl^- \rightleftharpoons CoCl_4^{2-} + 6H_2O$

(pink)

Which statement describes the change that the system will undergo if silver nitrate is added?

a) It should become more blue; b) It should become more pink; c) Water will be produced; d) The silver ion will react with the CoCl.2-; e) Nothing will change.

15. Which of the following statements is correct concerning the neutralization of sulfurous acid by a strong base?

 $2OH\Gamma(aq) + H_2SO_3(aq) \rightarrow SO_3^{2-}(aq) + 2H_2O(l)$

a) H₂SO₃ is an Arrhenius acid, but not a Brønsted-Lowry acid.

h) H₂SO₃ is a Brønsted-Lowry acid, but not an Arrhenius acid.

c) H₂SO₃ is both an Arrhenius acid and a Brønsted-Lowry acid.

d) H₂SO₃ is neither an Arrhenius acid nor a Brønsted-Lowry acid.

e) H₂SO₃ is a Lewis base.

B. Please write down the English name (4 pts each, total 20 pts)

1. MgBr1; 2. PbO1; 3. SF4; 4. (NH4)2SO4; 5. HNO3

C. Please define and give the description of the following terms (5 pts each, total 20 pts)

1. Oxidation-Reduction Reaction; 2. Limiting Reactants; 3. Orbitals; 4. Covalent Bonding