淡江大學 102 學年度碩士班招生考試試題

系別:化學工程與材料工程學系 科目:物理化學

考試日期:3月10日(星期日) 第2節

本試題共 5 大題,2 頁

- 1. (a) What physical significance does the wavefunction in Schrödinger equation tell about the particle? 5%
 - (b) An oxygen molecule is confined in a cubic box of volume 1.00 m³. Assuming that the molecule has an energy equal to $^3/_2$ kT at T=250 K, where k is the Boltzmann constant $k=R/N_{Avogadro}$, what is the value of $n=(n_x^2+n_y^2+n_z^2)^{1/2}$ for this molecule? 10%
 - (c) What is its de Broglie wavelength? 5%
- 2. A sample of 4.0 mol O_2 with $C_p = 29.355$ J K⁻¹ is originally confined in 20 dm³ at 300 K and then undergoes adiabatic expansion against a constant pressure of 50 kPa until the volume has increased to 80 dm³.
 - (a) Calculate $q, w, \Delta T, \Delta U, \Delta H$, and the final pressure of the gas p.

12%

(b) Calculate ΔS .

8 %

- 3. (a) What is the physical meaning of internal energy (usually termed as U) from molecular viewpoint? 5%
 - (b) Based on the explanation to question (a), why, the internal energy, can it be expressed as U = U(T, V)? That means internal energy is a function dependent of both T (temperature) and V (volume) of a system. 5%
 - (c) The heat capacity of a substance under constant volume condition is defined as $C_V = \frac{dq_V}{dT}$.

You are demanded to prove that $C_V = \left(\frac{\partial U}{\partial T}\right)_V$, knowing that the first law of thermodynamics and U = U(T, V) when no extra work other than expansion work is concerned. 10%

- 4. Refer you to next page for the data of the standard potential at 298K of the reduction half-reaction. Calculate
 - (a) The emf of the cell Ag|AgCl(s)|AgCl(aq)|Ag at 25°C, 5%
 - (b) the solubility product of AgCl, and 10%
 - (c) its solubility expressed in units of mol dm⁻³.
- 5. The reaction mechanism below involves an intermediate A.

$$A_2 \rightleftarrows A + A \text{ (fast)}$$

 $A + B \rightarrow P (slow)$

Deduce the rate law for the reaction in two ways by

- (a) assuming a pre-equilibrium, and 10%
- (b) making a steady-state approximation. 10%

淡江大學 102 學年度碩士班招生考試試題

系別:化學工程與材料工程學系 科目:物理化學

考試日期:3月10日(星期日)第2節

本試題共 5 大題,2 頁

eduction half-reaction	E*/V	Reduction half-reaction	E*/V
.g ⁺ + e ⁻ → Ag	+0.80	$1_2 + 2e^- \rightarrow 21^-$	+0.54
$sg^{2+} + e^- \rightarrow Ag^+$	+1.98	$l_3^2 + 2e^- \rightarrow 3l^-$	+0.53
sgBr+e"→ Ag+Br"	+0.0713	ln ⁺ +e ⁻ → ln	-0.14
$_{lgCl} + e^- \rightarrow Ag + Cl^-$	+0.22	$\ln^{2+} + e^- \rightarrow \ln^+$	-0.40
$_{\text{Ag}}^{2}\text{CrO}_{4} + 2e^{-} \rightarrow 2\text{Ag} + \text{CrO}_{4}^{2-}$	+0.45	$\ln^{3+} + 2e^- \rightarrow \ln^+$	-0.44
$gF + e^- \rightarrow Ag + F^-$	+0.78	$\ln^{4+} + 3e^- \rightarrow \ln$	-0.34
gI+e ⁻ → Ag+I ⁻	-0.15	$\ln^{3+} + e^- \rightarrow \ln^{2+}$	-0.49
$l^{3+} + 3e^- \rightarrow Al$	-1.66	$K^+ + e^- \rightarrow K$	-2.93
au++e-→Au	+1.69	$La^{3+} + 3e^- \rightarrow La$	-2.52
$u^{3+} + 3e^- \rightarrow Au$	+1.40	$Li^{+}+e^{-} \rightarrow Li$	-3.05
ia ²⁺ + 2e ⁻ → Ba	+2.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.36
le ²⁺ + 2e ⁻ → Be	-1.85	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
3i ³⁺ + 3e ⁻ → Bi	+0.20	$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+1.51
$3r_2 + 2e^- \rightarrow 2Br^-$	+1.09	$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	+1.23
$3rO^- + H_2O + 2e^- \rightarrow Br^- + 2OH^-$	+0.76	$MnO_4^- + 8H^4 + 5e^- \rightarrow Mn^{2+} + 4H_2O$	+1.51
Ca ²⁺ +2e ⁻ → Ca	-2.87	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0.50
Cd(OH)2+2e [±] → Cd+2OH [±]	-0.81	$MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$	+0.60
$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40	Na ⁺ +e ⁻ → Na	-2.71
le ³⁺ +3e ⁻ → Ce	-2.48	Ni ²⁺ + 2e ⁻ → Ni	-0.2
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	+1.61	$NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	+0.4
Cl ₂ + 2e ⁻ → 2Cl ⁻	+1,36	$NO_3^- + 2H^+ + e^- \rightarrow NO_2 + H_2O$	-0.80
$ClO^- + H_2O + 2e^- \rightarrow Cl^- + 2OH^-$	+0.89	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	+0.9
$ClO_4^- + 2H^+ + 2e^- \rightarrow ClO_3^- + H_2O$	+1.23	$NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^-$	+0.1
$ClO_4^- + H_2O + 2e^- \rightarrow ClO_3^- + 2OH^-$	+0.36	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	+0.4
Co ²⁺ + 2e ⁻ → Co	-0.28	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	+1.2
$Co^{3+} + e^- \rightarrow Co^{2+}$	+1.81	$O_2 + e^- \rightarrow O_2^-$	-0.5
Cr ²⁺ + 2e ⁻ → Cr	-0.91	$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^-$	-0.0
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	+1.33	$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	+2.0
Cr ³⁺ + 3e ⁻ → Cr	-0.74	$O_3 + H_2O + 2e^2 \rightarrow O_2 + 2OH^2$	+1.2
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.41	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.1
Cs ⁺ + e ⁻ → Cs	-2.92	$Pb^{4+} + 2e^- \rightarrow Pb^{2+}$	+1.6
Cu++e-→Cu	+0.52	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.3
Cu ²⁺ + 2e ⁻ → Cu	+0.34	$Pt^{2+} + 2e^- \rightarrow Pt$	+1.2
Cu ²⁺ + e ⁻ → Cu ⁺	+0.16	$Pu^{4+} + e^- \rightarrow Pu^{3+}$	+0.9 -2.9
F ₂ + 2e ⁻ → 2F ⁻	+2.87	$Ra^{2+} + 2e^- \rightarrow Ra$	-2.9 -2.9
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44	$Rb^{+} + e^{-} \rightarrow Rb$ $S + 2e^{-} \rightarrow S^{2-}$	-2.9 -0.4
$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.04		+2.0
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	+0.77	$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$ $Sc^{3+} + 3e^- \rightarrow Sc$	+2.0 −2.0
$[Fe(CN)_6]^{3-} + e^- \rightarrow [Fe(CN)_6]^{4-}$	+0.36	$Sc^{-1} + 3e \rightarrow Sc$ $Sn^{2+} + 2e^{-} \rightarrow Sn$	-2.0 -0.1
$2H^+ + 2e^- \rightarrow H_2$	0, by definition	$Sn^{4+} + 2e \rightarrow Sn$ $Sn^{4+} + 2e^{-} \rightarrow Sn^{2+}$	+0.1
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	$Sn'' + 2e \rightarrow Sn''$ $Sr^{2+} + 2e'' \rightarrow Sr$	-2.8
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br_{2} + 2H_{2}O$	+1.60	$3\Gamma + 2e \rightarrow 3i$ $Ti^{2+} + 2e^{-} \rightarrow Ti$	-1.6
$2HClO + 2H^{+} + 2e^{-} \rightarrow Cl_{2} + 2H_{2}O$	+1.63	$Ti^{3+} + e^{-} \rightarrow Ti^{2+}$	-0.
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	+1.78	$T^{1+} + e \rightarrow T$ $T^{3+} + e \rightarrow T^{3+}$	0.0
$H_4XeO_6 + 2H^+ + 2e^- \rightarrow XeO_3 + 3H_2O$	+3.0	$11^{-} + e \rightarrow 11$ $Tl^{+} + e^{-} \rightarrow Tl$	-0.:
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$ $H_2^{2+} + 2e^- \rightarrow 2Hg$	+0.79	$U^{3+} + 3e^- \rightarrow U$	-1.1
$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	+0.27	$U + 3e \rightarrow 0$ $U^{4+} + e^{-} \rightarrow U^{3+}$	-0.
$Hg^{2+} + 2e^- \rightarrow Hg$	+0.86	$V^{2+} + 2e^- \rightarrow V$	-1.
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	+0.92	$V^{-} + 2e \rightarrow V$ $V^{3+} + e^{-} \rightarrow V^{2+}$	-0.
$Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}$	+0.62	$V + e \rightarrow V$ $Zn^{2+} + 2e^{-} \rightarrow Zn$	-0.