淡江大學102學年度碩士班招生考試試題

系別: 數學學系

考試日期:3月10日 (星期日) 第3節

本試題共6大題,1頁

注意事項: (1) 請按題號順序作答。(2) 可用鉛筆。(3) 不可使用計算機。(4) 交回答案卷、題目卷、計算紙。

科目:機率與統計

- 1. (10 %) Let X be a random variable (r.v.) that takes values from 0 to 9 with equal probability. Find the pmf of the random variable $Y = X \mod(3)$, where $a \mod(m)$ denotes the remainder when a is divided by m.
- 2. (20%) Let the random variables X and Y have a joint pdf which is uniform over the rectangle with vertices at (0,0),(0,1) and (1,0).
 - (a) Find the conditional pdf of X given Y.
 - (b) Find E[X|Y=y].
 - (c) Find the value of E[X].
- 3. (20%) Let X_1, X_2, \cdots be independent random variables that are uniformly distributed over [-1,1].
 - (a) Let $Y_n = \prod_{i=1}^n X_i$, show that the sequence Y_1, Y_2, \cdots converges in probability to 0.
 - (b) Let $Y_n = \max_{1 \le i \le n} \{X_i\}$, show that the sequence Y_1, Y_2, \cdots converges in probability to 1.
- 4. (22 \Re) Suppose we have a random sample X_1, \dots, X_n from a shifted exponential distribution, that is, $X_i = \delta + Y_i$, where Y_1, \dots, Y_n are a random sample from an Exp(1) distribution and $\delta > 0$ is the unknown parameter. Let x_1, x_2, \dots, x_n be a dataset that is a realization of a random sample X_1, \dots, X_n .
 - (a) Draw the likelihood $L(\delta; x_1, \dots, x_n)$ and determine the MLE for δ .
 - (b) Let $T = \min\{X_1, \dots, X_n\}$, find the cdf of T.
 - (c) Find the $100(1-\alpha)\%$ confidence interval for δ .
- 5. (14 \Re) A number x was generated from a uniform distribution on the interval $[0, \theta]$. One decides to test $H_0: \theta = 2$ against $H_1: \theta \neq 2$ by rejecting H_0 if $x \leq 0.1$ or $x \geq 1.9$.
 - (a) Compute the probability of committing a type I error.
 - (b) Compute the probability of committing a type II error if the true value of θ is 2.5.
- 6. $(14 \Re)$ Let X_1, X_2, \dots, X_n be a random sample from a distribution with pdf $f(x; \theta) = \theta(1-x)^{\theta-1}, 0 < x < 1$, zero elsewhere, where $\theta > 0$.
 - (a) Find the form of the uniformly most powerful test of $H_0: \theta = 1$ against $H_1: \theta > 1$.
 - (b) What is the likelihood ratio test statistic for testing $H_0: \theta = 1$ against $H_1: \theta \neq 1$.