(102)輔仁大學碩士班招生考試試題

考試日期: 102 年 03 月 08 日 第 節 本試題共 2 頁 (本頁為第 1 頁)

科目: 軟體設計

系所組:資訊工程研究所

1. (10 points)

- (a) Please explain the sentence "Time complexity of an algorithm K is $O(n^2)$ ". (Note: "n" represents the total data size.) (5 points)
- (b) Please explain the notation " $2n^2 + \theta(n) = \theta(n^2)$ ". (5 points)

2. **(10 points)**

- (a) Show that the summation $\sum_{i=0}^{n} \lceil \log_2 i \rceil$ is $O(n \log n)$. (5 points)
- (b) Given a set $A = \{a_1, a_2, ..., a_n\}$ of n integers, describe in pseudo-code, an efficient method for computing each of average value $v_k = \sum_{i=1}^k a_i / k$, for k = 1, 2, ... n. What is the running time of this method? (5 points)
- 3. (10 points) Please give a recursive method that finds the minimum and maximum values in an array of int values without using any loops.
- 4. **(10 points)** Please explain the algorithm design method "divide and conquer". Use "Merge Sort" as an example to explain how to analyze the time- and space-complexity of "Merge Sort" which is designed by the "divide and conquer" method.
- 5. (10 points) Please explain the algorithm design method "dynamic programming". Given a list $A = \{a_1, a_2, ..., a_n\}$ of n integers, design an algorithm to find the longest ascending subsequence of the list A. Take a list $A = \{1,7,2,5,6,3\}$ for example. The longest ascending subsequence of the list A is $\{1,2,5,6\}$. Additionally, analyze the time- and space-complexity of your designed algorithm.
- 6. (10 points) Sorting Algorithm: Fill in the blanks with "always", "sometimes", or "never".

Sorting algorithm is very important. The time complexity of sorting algorithm is O(n) in
average case. A bubble sort of an array of 30 elements will take 29 passes. Through quick
sort, sorting an array of 30 elements will require 29 partitions. Each partition has
at least one element in its final sorted position. Insertion sort is more efficient than quick-sort
in average. The time complexity of quick sort is O(nlogn). Heap sort is a stable
sorting algorithm and its time complexity is O(nlogn). Additionally, binary search tree can
also be used for handling sorting. If a node x in a binary search tree has two children, then the
successor of node x 9 has one left child. Searching a key in a binary search tree 0
takes O(logn) time. (Note: "n" represents the total data size.)

- 7. (10 points) Given a priority queue Q, answer the following two problems.
 - (a) Can max (min) heap be used to implement Q? Please explain what max (min) heap is and justify your answer. (5 points)
 - (b) Both sorted linked list and unsorted linked list can be used to implement Q. Please compare the time complexity of deleting data from the priority queue Q using these two linked lists. (5 points)

8. (10 points)

- (a) For a tree T, let n_I denote the number of its internal nodes, and let n_E denote the number of its external nodes. Show that if every internal nodes in T has exactly 4 children, then $n_E = 3n_I + 1$. (5 points)
- (b) Draw a binary tree T such that its preorder traversal is ABDICEGFH and its inorder traversal is DIBAGECFH. (5 points)

※ 注意:1.考生須在「彌封答案卷」上作答。

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。

(102)輔仁大學碩士班招生考試試題

考試日期:102年03月08日第 節

本試題共 2 頁 (本頁為第 2 頁)

4	П	•	하 교육 그다 그나
科	Ħ	•	軟體設計

系所組:資訊工程研究所

9. (10 points) Graph Theory: Fill in the blanks with "always", "sometimes", or "never".

A spanning tree of graph G is an acyclic subgraph of G which connects all of the vertices in G. If G is
a connected undirected graph, applying DFS (Depth-First Search) algorithm to G produces
tree and back edges. Spanning trees of a graph G has the same number of edges. Any two
spanning trees of a graph G 3 have a common edge. Additionally, minimum spanning tree
problem is the most important issue we concerned. Minimum spanning tree of a graph G is
unique. The weight of minimum spanning tree of a graph G is unique. Minimum spanning
tree found by the Prim's algorithm is unique. Except minimum spanning tree, shortest path
problem in a graph is also a very popular issue. The path length from a vertex u to a vertex v in a
minimum spanning tree of graph G is a shortest path from vertex u to vertex v in the graph
G. Additionally, if G is a directed graph with negative edges, then the answer of a single source
shortest path problem solved by the Dijkstra's algorithm is wrong and solved by the
"Bellman Ford algorithm" is wrong. Furthermore, if G is a directed graph with a negative
cycle, then there is a pair of vertices that has a shortest path.

- 10. (10 points) Consider a directed graph G.
 - (a) Can DFS (Depth-First Search) be used to find a cycle in G? You have to justify your answer. No points will be given if you don't give the justification. (5 points)
 - (b) Can BFS (Breadth-First Search) be used to check whether G is connected? You have to justify your answer. No points will be given if you don't give the justification. (5 points)

[※] 注意:1.考生須在「彌封答案卷」上作答。

^{2.}本試題紙空白部份可當稿紙使用。

^{3.}考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。