(102)輔仁大學碩士班招生考試試題

考試日期:102年3月8日第3 節

本試題共 一 頁 (本頁為第 頁)

科目: 近代物理

系所組: 物理學系

1. (a) (20%) The potential energy for a particle in a one-dimensional box is defined as

$$V(x) = \begin{cases} 0 & \text{for } -a/2 < x < a/2 \\ \infty & \text{for } |x| > a/2 \end{cases}.$$

Find the normalized stationary-state wave functions $\Psi_n(x)$ and the energy eigenvalues E_n by solving the time-independent Schrödinger equation. Note that n is any integer, odd or even.

(b) (15%) Assume that the particle in the box is described by a superposition of the two lowest-energy eigenfunctions, i.e.,

$$\Psi(x) = \frac{1}{\sqrt{2}} \left(\Psi_1 + \Psi_2 \right).$$

Calculate the expectation values < x > and , where p is the momentum operator.

2. Assume a square-well potential

$$V(x) = \begin{cases} 0 & \text{for } -a/2 < x < a/2 \\ V_0 & \text{for } |x| > a/2 \end{cases}$$

is capable of producing a few bound states.

- (a) (15%) Sketch the qualitative behavior of the eigenfunctions for the ground state and the first two excited states.
- (b) (20%) Derive the transcendental equation

$$\tan\sqrt{\frac{ma^2}{2\hbar^2}E} = \sqrt{\frac{V_0 - E}{E}}$$

for the energy eigenvalues of the even states in the finite square well.

- 3. (a) (15%) Sketch the normal Zeeman splittings for the n=2 and n=3 states of the hydrogen atom, and identify the allowed $(n=3 \rightarrow n=2)$ electric dipole transitions.
 - (b) (15%) Sketch the anomalous Zeeman splittings for the $1S_{1/2}$, $2P_{1/2}$ and $2P_{3/2}$ energy levels of the hydrogen atom, and identify the allowed $2P_{1/2} \rightarrow 1S_{1/2}$ and $2P_{3/2} \rightarrow 1S_{1/2}$ electric dipole transitions.

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。