國立中央大學101學年度碩士班考試入學試題卷 所別:<u>化學工程與材料工程學系碩士班 甲組(一般生)</u> 科目:<u>化工熱力學及化學反應工程 共 Z 頁 第 J 頁 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作答</u> ## 1. (10%) A steam turbine in a small electric power plant is designed to accept 4000 kg/h of steam at 30 bar and 500 °C and exhaust the steam at 10 bar. Assuming that the turbine is adiabatic and has been well designed ($\dot{S}_{gen} = 0$), compute the exit temperature of the steam and the power generated by the turbine. | Commenter of | ., | | |--------------|---------|-------------| | Superheated | . Vapor | (Continued) | | T (°C) | P = 1.00 MPa (179.91) | | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--|--|--| | | Ŷ | Û | Ĥ | Ŝ | | P = 2.50 MPa (223.99) | | | | P = 3.00 MPa (233.90) | | | | | Sat.
200
250
300
350
400
500
600 | 0.194 44
0.2060
0.2327
0.2579
0.2825
0.3066
0.3541
0.4011 | 2583.6
2621.9
2709.9
2793.2
2875.2
2957.3
3124.4
3296.8 | 2778.1
2827.9
2942.6
3051.2
3157.7
3263.9
3478.5
3697.9 | 6.5865
6.6940
6.9247
7.1229
7.3011
7.4651
7.7622
8.0290 | Sat.
225
250
300
350
400
450
500
600 | 0.079 98
0.080 27
0.087 00
0.098 90
0.109 76
0.120 10
0.130 14
0.139 98
0.159 30 | 2603.1
2605.6
2662.6
2761.6
2851.9
2939.1
3025.5
3112.1
3288.0 | 2803.1
2806.3
2880.1
3008.8
3126.3
3239.3
3350.8
3462.1
3686.3 | 6,2575
6,2639
6,4085
6,6438
6,8403
7,0148
7,1746
7,3234
7,5960 | 0.066 68
0.070 58
0.081 14
0.090 53
0.099 36
0.107 87
0.116 19
0.132 43 | 2604.1
2644.0
2750.1
2843.7
2932.8
3020.4
3108.0
3285.0 | 2804.2
2855.8
2993.5
3115.3
3230.9
3344.0
3456.5
3682.3 | 6.1869
6.2872
6.5390
6.7428
6.9212
7.0834
7.2338
7.5085 | #### 2. (15%) From experimental data it is known that at moderate pressures the volumetric equation of state may be written as Pv = RT + BP. Show that the van der Waals equation $(P = \frac{RT}{v - b} - \frac{a}{v^2})$ leads to the following expression for the virial coefficient B = b - a/RT. The temperature at which B = 0 is called the Boyle temperature. Show that for the van der Waals fluid, $T_{Boyle} = 3.375T_C$. State the physical significance of Boyle temperature. #### 3. (12%) Vapor-liquid equilibrium data for the A-B system at a constant temperature of 350 K shows that component B follows Henry's law in the range $0 < X_B \le 0.05$. At this temperature the following data point has been reported $X_A = 0.975$, $y_A = 0.942$, P = 1035 mmHg, and the vapor pressures are $P^o_A = 1000$ mmHg, $P^o_B = 800$ mmHg. Calculate y_B and P when $X_B = 0.04$. #### 4. (13%) In the system A-B, activity coefficients can be expressed by $$\ln \gamma_A = 0.5 X_B^2$$ and $\ln \gamma_B = 0.5 X_A^2$ The vapor pressure of A and B at 80° C are $P_{A}^{\circ} = 900$ mmHg, $P_{B}^{\circ} = 600$ mmHg. Is there an azeotrope in this system at 80° C, and if so, what is the azeotrope pressure and composition? 注:背面有試題 # 國立中央大學101學年度碩士班考試入學試題卷 所別:<u>化學工程與材料工程學系碩士班 甲組(一般生)</u> 科目:<u>化工熱力學及化學反應工程</u> 共 2 頁 第 2 頁 本科考試可使用計算器,廠牌、功能不拘 * *請在試卷答案卷(卡)內作答 # 5. (10%) The trimerization: $3A(g) \rightarrow A_3(g,l)$ is carried out isothermally and without pressure drop in a PFR at 298 K and 2 atm. As the concentration of A₃ increases down the reactor and A₃ begins to condense. The vapor pressure of A₃ at 298K is 0.5 atm. If an equal molar mixture of A and inert, I, is fed to the reactor at what conversion of A will A₃ begin to condense? $$A(g) \rightarrow \frac{1}{3}A_3(g,l)$$ Condensation begins at $$y = \frac{P_V}{P_T} = \frac{0.5 \text{ atm}}{2 \text{ atm}} = 0.25$$ # 6. (15%) The following reactions were found to occur while trying to make a desired product B $$A \rightarrow B \quad -r_{A1} = k_{1A}C_A^2$$ $$A \rightarrow X \quad -r_{A2} = k_{2A}C_A$$ $$A + X \rightarrow Y \quad -r_{A3} = k_{3A}C_AC_X$$ Species X and Y are both foul pollutants - (a) What is the instantaneous selectivity of B with respect to the foul pollutant X and Y? - (b) How would you carry out this reaction to maximize the formation of B? ### Additional Information $k_{1A}=0.5e^{-10,000/T}$ min⁻¹, T in degree Kelvin k_{2A}=50e^{-20,000/T} min⁻¹, T in degree Kelvin $k_{3A}=100e^{-5,000/T} \text{ min}^{-1}$, T in degree Kelvin #### 7. (10%) The gas-phase decomposition: 3A→2B+C was carried out in a constant volume batch reactor. t_{1/10} was the time necessary for the concentration of A to fall to 1/10 of its initial concentration. Run1 through 4 were carried out at 80°C, while run 5 was carried out at 28°C. Please determine the reaction order, specific reaction rate, and the activation energy. | Run | 1 | 2 | 3 | 4 | 5 | |--|-------|-------|-------|------|-------| | Initial concentrations C _{A0} (g-mol/L) | 0.090 | 0.150 | 0.245 | 0.41 | 0.245 | | t _{1/10} (min) | 109.2 | 40.2 | 14.8 | 5.4 | 90.2 | #### 8. (15%) A second-order gas reaction $3A \rightarrow 2B+C$ is taking place in 40 meters of a pipe packed with catalyst. The diameter of the pipe is 2 cm. The pellet size is 3 mm in diameter and the porosity is 50%. The density of catalyst is 4 g/cm³. The specific reaction rate is 1 (m⁶/kmol-kg cat-h). There is 1 kg/h of gas passing through the bed and the entering concentration of A is 0.1 kmol/m³. The entering pressure is 2 atm. The properties of the gas are similar to air that the density is 1 kg/m³ and the viscosity is 1.82×10^{-5} kg/m-s. - (a) What is the conversion if there is no pressure drop? - (b) What is the conversion if there pressure drop is considered? Hint. The Ergun equation: $$\frac{dP}{dz} = -\frac{G}{\rho g_e D_\rho} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150(1-\phi)\mu}{D_\rho} + \frac{\text{Term 2}}{1.75G}\right]$$ 定:背面有試現