國立中央大學101學年度碩士班考試入學試題卷

所別:<u>太空科學研究所碩士班 不分組(一般生)</u> 科目:<u>電磁學</u> 共<u>/</u>頁 第<u>/</u>頁 太空科學研究所碩士班 不分組(在職生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

- 1. The electric field \vec{E} in Cartesian coordinates (x, y, z) is given $\vec{E} = k[y^2\hat{x} + (2xy + z^2)\hat{y} + f\hat{z}]$ where k is a constant with the appropriate units and $\hat{x}, \hat{y}, \hat{z}$ are Cartesian unit vectors parallel to the x, y, z axes, respectively.
 - (a) Find the function f such that the given field is an electrostatic field. (5%)
 - (b) For the electrostatic field, find the potential with the origin as the reference point. (5%)
 - (c) Find the charge distribution for the electrostatic field. (5%)
- 2. A conducting sphere of radius R_1 with charge (Q) is surrounded a thick concentric conducting shell of inner radius $R_2(>R_1)$ and outer radius $R_3(>R_2)$. The shell carries net charge q.
 - (a) Find the charge distribution at the conducting shell. (5%)
 - (b) Find the electric field at $\vec{r}(|\vec{r}| > R_3)$. (5%)
 - (c) Find the potential at the center, using infinity as the reference point. (5%)
- 3. A point charge q starts at the origin with the uniform electric field \vec{E} in the x-direction, and the uniform magnetic field \vec{B} in the y-direction.
 - (a) Find the trajectory for the particle with positive charge (q > 0) at rest initially. (5%)
 - (b) Sketch the trajectory of the particle in (a). (5%)
 - (c) Find the trajectory for the particle with negative charge (q < 0) at initial velocity (E/B) in z-direction. (5%)
 - (d) Sketch the trajectory of the particle in (c). (5%)
- 4. There are infinite uniform surface currents, current density (\vec{K}) in y-direction flowing over the z = 0 plane, surface current density $(-\vec{K}/2)$ flowing over the z = d(d > 0) plane, and surface current density $(-\vec{K}/2)$ flowing over the z = (-d) plane.
 - (a) Find the magnetic field at d > z > 0. (5%)
 - (b) Find the magnetic field at (-d) < z < 0. (5%)
 - (c) Find the magnetic field at z > d. (5%)
 - (d) Find the magnetic field at (-d) > z. (5%)
- 5. A conducting sphere of radius R with charge Q is spinning with constant angular velocity $\bar{\omega}$ along the z-axis.
 - (a) Find the current distribution. (5%)
 - (b) What is the magnetic moment (dipole) of the sphere? (5%)
 - (c) Find the magnetic field at a point outside the sphere. (5%)
- 6. In a perfect conductor with infinite conductivity.
 - (a) Find the electric field inside the perfect conductor. (5%)
 - (b) Find the magnetic field inside the perfect conductor. (5%)
 - (c) Find the current in a superconductor (perfect conductor with property $\vec{B} = 0$ inside). (5%)