國立中央大學101學年度碩士班考試入學試題卷

所別:<u>太空科學研究所碩士班 不分組(一般生)</u> 科目:<u>應用數學</u> 共<u>2</u>頁 第<u>1</u>頁 太空科學研究所碩士班 不分組(在職生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

注意:作答時,如果只列出最後答案,卻沒有文字繪圖說明或計算步驟,該題將不予計分。

1. (20 points) [(a) 5 points, (b) 5 points, (c) 5 points, (d) 5 points]

Consider the following function

$$f(x) = \frac{n}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

where n, μ , and σ are positive real numbers.

- (a) Find the location(s) where $\frac{d^2}{dx^2} f(x) = 0$.
- (b) Sketch the function f(x) from $x \to -\infty$ to $x \to +\infty$ and mark the location(s) where $\frac{d}{dx}f(x) = 0$ and the location(s) where $\frac{d^2}{dx^2}f(x) = 0$.
- (c) Determine the definite integral $I_1 = \int_{-\infty}^{+\infty} f(x) dx$
- (d) Determine the definite integral $I_2 = \int_{-\infty}^{+\infty} x^2 f(x) dx$
- **2.** (20 points) [(a) 10 points, (b) 5 points, (c) 5 points]

Consider a particle with mass m, position x(t), and x-component velocity $v_x(t)$, so that

$$\frac{dx(t)}{dt} = v_x(t)$$

If the particle is decelerated by a velocity-dependent force, such that

$$m\frac{dv_x(t)}{dt} = -bv_x(t)$$

where b is a positive real number. For $v_x(t)$ much less than the speed of light, the kinetic energy of the particle can be defined as $E_k = (1/2)mv_x^2$.

- (a) Find the solutions of the functions x(t) and $v_x(t)$ with initial conditions $v_x(t=0) = v_0$ and $x(t=0) = x_0$.
- (b) Determine how the particle kinetic energy changes with particle's position x.
- (c) Sketch the kinetic energy $E_k(x)$ as a function of particle's position x and determine where the particle will lose most of its kinetic energy.

意:背面有試題

國立中央大學101學年度碩士班考試入學試題卷

所別:<u>太空科學研究所碩士班 不分組(一般生)</u> 科目:應用數學 共<u>2</u>頁 第<u>2</u>頁 太空科學研究所碩士班 不分組(在職生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

3. (15 points) [(a) 5 points, (b) 5 points, (c) 5 points]

Let
$$M = \begin{bmatrix} a & 0 & -i\omega \\ 0 & b & 0 \\ +i\omega & 0 & c \end{bmatrix}$$
 where $i = \sqrt{-1}$

- (a) Find M^{-1} (the inverse matrix of M)
- (b) Find the eigen values of the matrix M.
- (c) Show that the eigen vectors of the different eigen values of the matrix M are perpendicular to each other.

4. (20 points) [(a) 5 points, (b) 5 points, (c) 10 points]

Evaluate the following definite integrals, where $z_0 = 5 - 3i$ and $i = \sqrt{-1}$

(a)
$$I_1 = \int_{-\infty - i\infty}^{+\infty - i\infty} \frac{e^{-iz}}{z - z_0} dz$$

(b)
$$I_2 = \int_{-\infty}^{+\infty} \frac{e^{-iz}}{z - z_0} dz$$

(c)
$$I_3 = \int_{-\infty}^{+\infty} dk \int_{-\infty}^{+\infty} f(\xi) e^{ik(x-\xi)} d\xi$$

5. (25 points) [(a) 5 points, (b) 5 points, (c) 5 points, (d) 5 points, (e) 5 points]

Let us consider a spherical coordinate system (r, θ, ϕ) , where r is the radial distance from the origin; θ is the polar angle between the position vector $\mathbf{r} = \hat{r}r$ and the z-axis; ϕ is the azimuthal angle of the position vector \mathbf{r} with respect to the x-z plane. The unit vectors \hat{r} , $\hat{\theta}$, $\hat{\phi}$ are parallel to the ∇r , $\nabla \theta$, and $\nabla \phi$ directions, respectively.

Please determine the following vector differentiations.

(a) Let
$$\partial \hat{\theta} / \partial \theta = a_1 \hat{r} + a_2 \hat{\theta} + a_3 \hat{\phi}$$
. Find a_1, a_2, a_3

(b) Let
$$\partial \hat{r} / \partial \theta = b_1 \hat{r} + b_2 \hat{\theta} + b_3 \hat{\phi}$$
. Find b_1, b_2, b_3

(c) Let
$$\partial \hat{r} / \partial \phi = c_1 \hat{r} + c_2 \hat{\theta} + c_3 \hat{\phi}$$
. Find c_1, c_2, c_3

(d) Let
$$\partial \hat{\phi} / \partial \phi = d_1 \hat{r} + d_2 \hat{\theta} + d_3 \hat{\phi}$$
. Find d_1, d_2, d_3

(e) Let
$$\partial \hat{\theta} / \partial \phi = e_1 \hat{r} + e_2 \hat{\theta} + e_3 \hat{\phi}$$
. Find e_1, e_2, e_3

(以上每小題,三組係數同時答對才計分)

注意:背面有試題