國立臺南大學 102 學年度 電機工程學系碩士班 招生考試 電磁學 試題卷

每大題 10 分，共 10 題，合計 100 分
1．A vector filed $\vec{D}=\vec{e}_{r}\left(\cos ^{2} \phi / r^{3}\right)$ exists in the region between two spherical shells defined by $r=2$ and $r=3$ ．Evaluate $\oint_{S} \vec{D} \cdot d \vec{a}$ ．

2．A spherical distribution of charge $\rho=\rho_{0}\left[1-\left(r^{2} / b^{2}\right)\right]$ exists in the region $1 \leq r \leq \mathrm{b}$ ．This charge distribution is concentrically surrounded by a conducting shell with inner radius $R i(>b)$ and outer radius $R o$ ． Determine \vec{E} everywhere．

3．An air coaxial transmission line has a solid inner conductor of radius a and a very thin outer conductor of inner radius b ．Determine the inductance per unit length of the line．

4．A right－hand circularly polarized plane wave represented by the phasor $\vec{E}(z)=E_{0}\left(e_{x}-j e_{y}\right) e^{-j \beta z}$ impinges normally on a perfectly conducting wall at $\mathrm{z}=0$ ．
（a）Determine the polarization of the reflected wave．
（b）Obtain the instantaneous expression of the total electric intensity based on a cosine time reference．

5．A sinusoidal voltage generator $V_{g}=100 \sin (\omega t)(\mathrm{V})$ and internal impedance $Z_{g}=50 \Omega$ is connected to a quarter－wave lossless line having a characteristic impedance $R_{0}=50 \Omega$ that is terminated in a purely reactive load $Z_{L}=\mathrm{j} 50 \Omega$ ．Please obtain the instantaneous power and the average power delivered to the load．

6．A spherical capacitor consists of an inner conducting sphere of radius a and an outer conductor with a spherical inner wall of radius b ．The space in between is filled with a dielectric of permittivity ε ．Determine the capacitance．

7．（a）When does Brewster angle exist at an interface of two nonmagnetic media？
（b）Why is a Brewster angle also called a polarizing angle？

8．（a）Write the instantaneous field expressions for the TE_{10} mode in a perfectly conducting rectangular waveguide having sides a and b ．
（b）Find the cutoff frequency for the TE_{10} mode．

9．A spherical region carries a uniform charge per unit volume ρ ．Let \mathbf{r} be the vector from the center of the sphere to a general point P within the sphere．Please find the electric field at P ．

10．A conducting sliding bar oscillates over two parallel conducting rails in a sinusoidally varying magnetic field $\mathbf{B}=\mathbf{a}_{z} 5 \cos (\omega t)(\mathrm{mT})$ ，as shown in Fig．1．The position of the sliding bar is given by $x=0.4[1-\cos (\omega t)](m)$ ， and the rails are terminated in a resistance $\mathrm{R}=0.2(\Omega) . \quad$ Find i ．

Fig． 1

