國立臺南大學 102 學年度 電機工程學系碩士班 招生考試 電子學 試題卷

1. Suppose the solar irradiation Q_1 is higher than Q_2 . Draw the *V-I* characteristic curves of a silicon-based solar cell under the irradiations Q_1 and Q_2 .

(10 Points)

2. (a) An differential OPA circuit is shown in Fig. 1. OPA is ideal. Draw the waveform of output signal v_o if the input signal of the circuit is defined as $v_i = \sin 314t$ (volt). (波形圖請標明座標軸之刻度)

(10 Points)

(b) Similarly, another OPA circuit is shown in the Fig 2, where all OPA and diodes are ideal. Draw the waveform of output signal v_o if the input signal of the circuit is given as $v_i = \sin 314t$ (volt). (波形圖請標明座標軸之刻度)

(10 Points)

(c) The band-pass amplifier in Fig. 3 has f_L = 150Hz, f_H =180Hz, and A=10. If the input signal of amplifier is given by $v_i = \sum_{h=1}^{25} \frac{3}{h} \sin(314ht)$ (volt). Find the mathematic expression of the output signal. (10 Points)

3. Use the Feedback method to find the voltage gain V_0/V_S , the input resistance R_{in} , and the output resistance R_{out} of the inverting op amp configuration of Fig. 4. (assume the op amp has open-loop gain μ =10⁴, R_{id} =100 K Ω , R_{icm} $\rightarrow\infty$, and r_0 =1K Ω .)

4. For the circuits in Fig. 5(a)-(c), $\mu_n C_{ox}$ =2.5 $\mu_p C_{ox}$ =20 μ A/V², $|V_t|$ =1V, neglect the channel-length modulation effect, L=10 μ m, and W=30 μ m, unless otherwise specified. Find the labeled currents (I_1 , I_3 , I_6) and voltages (V_2 , V_4 , V_5).

(10 Points)

- 5. The emitter follower in Fig. 6 is used to connect a source with R_{sig} =10 k Ω to a load R_L =1 k Ω . The transistor is biased at I=5 mA, utilizes a resistance R_B =40 k Ω , and has β =100 and V_A =100 V.
 - (a) Find R_{in}, G_v, G_{vo}, and R_{out}.
 - (b) What is the largest peak amplitude of an output sinusoid that can be used without the transistor cutting off?
 - (c) If in order to limit nonlinear distortion the base-emitter signal voltage is limited to 10 mV peak, what is the corresponding amplitude at the output?
 - (d) What will the overall voltage gain become if R_L is changed to 2 k Ω ?

(20 Points)

- 6. Fig. 7 shows a cascode MOS mirror utilizing devices with V_t =0.5V, $\mu_n C_{ox}$ =387 μ A/V², V_A =5V/ μ m, W/L=3.6 μ m/0.36 μ m, and I_{REF} =100 μ A. Find the minimum dc voltage required at the output and the output resistance. (10 Points)
- 7. An active-loaded MOS differential amplifier of the type shown in Fig.8 is specified as follows: $(W/L)_n=100$, $(W/L)_p=200$, $\mu_pC_{ox}=0.2\text{mA/V}^2$, $V_{An}=|V_{Ap}|=20V$, I=0.8mA, $R_{SS}=25\text{k}\Omega$. Calculate G_m , R_o , A_d , $A_{cm}/$, and CMRR. (10 Points)

第3頁,共3頁