國立臺南大學 102 學年度 電機工程學系碩士班 招生考試 工程數學 試題卷

每大題10分,共10題,合計100分

- 1. Let the matrix $A = \begin{bmatrix} 1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3 \end{bmatrix}$. Find the inverse of the matrix A. (if it exists)
- 2. Evaluate $y^{-3}y' + y^{-2} = 1$.

3. Compute the inverse Laplace transform of the function
$$\frac{e^{-s} + e^{-2s}}{s^2 - 3s + 2}$$
.

4. Suppose the function f has fundamental period p=4, and

$$f(x) = \begin{cases} x^2 & , 0 \le x < 1 \\ 1 & , 1 \le x \le 4 \end{cases}$$

Write the Fourier series for the function f.

5. Evaluate
$$\oint_{|z|=2} \frac{\sin z}{z^2 + 1} dz$$
 with Cauchy Integral Formula.

6. The signal $x(t) = \sin(2\pi t) + \cos(3\pi t)$ is represented by the Fourier series as $x(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_0 t}$. Evaluate the Fourier series coefficients C_n of the signal x(t).

- 7. Consider the basis $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ for R^2 , where $\overrightarrow{v_1} = (1,1)$ and $\overrightarrow{v_2} = (1,0)$ and let $T: R^2 \rightarrow R^2$ be the linear operator such that $T(\overrightarrow{v_1}) = (1, -2)$ and $T(\overrightarrow{v_2}) = (-4,1)$.
 - (a) Find a formula for $T(x_1, x_2)$ (5 points)
 - (b) Find T(5,-3) (5 points)
- 8. Solve the differential equation:

$$x\frac{d^2y}{dx^2} - (2x+1)\frac{dy}{dx} + (x+1)y = (x^2+x-1)e^{2x}$$

- 9. Evaluate the value of the integral $\int_0^{\pi} \frac{d\theta}{(3+2\cos\theta)^2}$.
- 10.(a) Find a matrix \mathbf{P} that diagonalizes $\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$. (5 points)
 - (b) Let the matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Find $e^{\mathbf{A}}$. (5 points)