國立臺南大學 102 學年度 電機工程學系碩士班 招生考試 控制系統 試題卷

每題 10 分，共 10 題，合計 100 分

1．Determine the number of roots of each equation that is in the right－half s－plane．
（a）$S^{3}-3 S^{2}+2=0$
（b）$S^{6}+S^{5}-2 S^{4}-3 S^{3}-7 S^{2}-4 S-4=0$

2．Reduce the block diagram shown in Fig． 1 to unity feedback form and find the Y／X．

Fig． 1
3．A spring－mass－friction system is described by the following differential equation：

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y(t)=r(t)
$$

Define the state variables as $x_{1}(t)=y(t), x_{2}(t)=\frac{d y(t)}{d t}$ ．
（a）Write the state equations in vector－matrix form．
（b）Find the state－transition matrix $\phi(t)=e^{A t}$ ．

4．The block diagram of a system is shown in Fig．2，and
$G 1(s)=\frac{1}{s+1}, \quad G 2(s)=\frac{-4}{s+2}, \quad U(s)=\frac{1}{s}$.

Fig． 2
Please find the steady state error of this system．
5．As shown in Fig．3，both the forward－path transfer function matrix and the feedback－path transfer function matrix of the system are given as follows．

Fig． 3

$$
G(s)=\left[\begin{array}{cc}
\frac{2}{s(s+2)} & 10 \\
\frac{5}{s} & \frac{1}{s+1}
\end{array}\right] \quad H(s)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Find the closed－loop transfer function matrix $[I+G(s) H(s)]^{-1} G(s)$

6．As shown in Fig．4，determine the critical value of T for stability．

Fig． 4

7．As shown in Fig．5，find the root locus of the closed system with $K>0$ ．

Fig． 5

8．Please see the Fig．6．Employ the Nyquist criterion to determine the stability of the feedback system shown in the below for all $-\infty<\mathrm{K}<\infty$

Fig． 6

9．The characteristic equation of a certain system is $\mathrm{s}^{3}+\mathrm{s}+\mathrm{K}\left(\mathrm{s}^{2}+\mathrm{b}\right)=0,0 \leqq \mathrm{~K} \leqq \infty$ ． Sketch the root locus for（a）$b=1 / 3$ ，（b）$b=1 / 9$ ．

10．As shown in Fig．7，try to find out the ranges of the parameters k and h and show it in the k－h plane，which can make the pole of the feedback system at $\mathrm{s}=-1$ by using the PI controller $k+(h / \mathrm{s})$ to improve the system $G(\mathrm{~s})=1 /[\mathrm{s}(\mathrm{s}+4)]$ ．

Fig． 7

