1．Suppose the solar irradiation Q_{I} is higher than Q_{2} ．Draw the $V-I$ characteristic curves of a silicon－based solar cell under the irradiations Q_{1} and Q_{2} ．
（10 Points）
2．（a）An differential OPA circuit is shown in Fig．1．OPA is ideal．Draw the waveform of output signal v_{o} if the input signal of the circuit is defined as $v_{i}=\sin 314 t$（volt）．（波形圖請標明座標軸之刻度）
（10 Points）
（b）Similarly，another OPA circuit is shown in the Fig 2，where all OPA and diodes are ideal．Draw the waveform of output signal v_{o} if the input signal of the circuit is given as $v_{i}=\sin 314 t$（volt）．（波形圖請標明座標軸之刻度）
（10 Points）
（c）The band－pass amplifier in Fig． 3 has $\boldsymbol{f}_{\boldsymbol{L}}=150 \mathrm{~Hz}, \boldsymbol{f}_{\boldsymbol{H}}=180 \mathrm{~Hz}$ ，and $\boldsymbol{A}=10$ ．If the input signal of amplifier is given by $v_{i}=\sum_{h=1}^{25} \frac{3}{h} \sin (314 h t)$（volt）．Find the mathematic expression of the output signal．
（10 Points）

Fig． 1

Fig． 2

Fig． 3

3．Use the Feedback method to find the voltage gain V_{0} / V_{S} ，the input resistance $R_{i n}$ ， and the output resistance $\mathrm{R}_{\text {out }}$ of the inverting op amp configuration of Fig． 4. （assume the op amp has open－loop gain $\mu=10^{4}, \mathrm{R}_{\mathrm{id}}=100 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{icm}} \rightarrow \infty$ ，and r_{0} $=1 \mathrm{~K} \Omega$ ．）
（10 Points）

Fig． 4

4．For the circuits in Fig．5（a）－（c），$\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=2.5 \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=20 \mu \mathrm{~A} / \mathrm{V}^{2},\left|\mathrm{~V}_{\mathrm{t}}\right|=1 \mathrm{~V}$ ，neglect the channel－length modulation effect， $\mathrm{L}=10 \mu \mathrm{~m}$ ，and $\mathrm{W}=30 \mu \mathrm{~m}$ ，unless otherwise specified．Find the labeled currents $\left(I_{1}, I_{3}, I_{6}\right)$ and voltages $\left(V_{2}, V_{4}, V_{5}\right)$ ．
（10 Points）

Fig． 5

5．The emitter follower in Fig． 6 is used to connect a source with $\mathrm{R}_{\text {sig }}=10 \mathrm{k} \Omega$ to a load $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ ．The transistor is biased at $\mathrm{I}=5 \mathrm{~mA}$ ，utilizes a resistance $\mathrm{R}_{\mathrm{B}}=40 \mathrm{k} \Omega$ ，and has $\beta=100$ and $\mathrm{V}_{\mathrm{A}}=100 \mathrm{~V}$ ．
（a）Find $R_{i n}, G_{v}, G_{v o}$ ，and $R_{\text {out }}$ ．
（b）What is the largest peak amplitude of an output sinusoid that can be used without the transistor cutting off？
（c）If in order to limit nonlinear distortion the base－emitter signal voltage is limited to 10 mV peak，what is the corresponding amplitude at the output？
（d）What will the overall voltage gain become if R_{L} is changed to $2 \mathrm{k} \Omega$ ？
（20 Points）

Fig． 6
6．Fig． 7 shows a cascode MOS mirror utilizing devices with $\mathrm{V}_{\mathrm{t}}=0.5 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=387 \mu \mathrm{~A} / \mathrm{V}^{2}$ ， $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V} / \mu \mathrm{m}, \mathrm{W} / \mathrm{L}=3.6 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}$ ，and $\mathrm{I}_{\mathrm{REF}}=100 \mu \mathrm{~A}$ ．Find the minimum dc voltage required at the output and the output resistance．
（10 Points）

7．An active－loaded MOS differential amplifier of the type shown in Fig． 8 is specified as follows：$(\mathrm{W} / \mathrm{L})_{\mathrm{n}}=100,(\mathrm{~W} / \mathrm{L})_{\mathrm{p}}=200, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=0.2 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{An}}=\left|\mathrm{V}_{\mathrm{Ap}}\right|=20 \mathrm{~V}, \mathrm{I}=0.8 \mathrm{~mA}$ ， $\mathrm{R}_{\mathrm{SS}}=25 \mathrm{k} \Omega$ ．Calculate $G_{m}, R_{o}, A_{d},\left|A_{c m}\right|$ ，and $C M R R$ ．
（10 Points）

Fig． 7

Fig． 8

