國立臺南大學 102 學年度 資訊工程學系碩士班 招生考試 離散數學與線性代數 試題卷

- 一、PART I (1~5). Multiple-choice questions (每題 4 分, 共 20 分)
 - 1. For integer $n \ge 1$, $r \ge 1$, and $n \ge r$, which equation in the following is true?

(A)
$$\binom{2n}{1} + \binom{2n}{3} + \binom{2n}{5} + \dots + \binom{2n}{2n-1} = \binom{2n}{2} + \binom{2n}{4} + \dots + \binom{2n}{2n}$$

(B)
$$\binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}$$

(C)
$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n+1}{r-1}$$

(D)
$$\sum_{i=1}^{n} (i)(i!) = (n+1)!$$

2. Let p, q and r be statements. The logical connectives are \wedge : *conjunction*, \vee : *disjunction*, \rightarrow : *implication*, \neg : *not*. Consider the following statements, which statement is **not** a tautology?

(A)
$$[(p \land q) \lor [(p \rightarrow (q \rightarrow r)]] \rightarrow r$$

(B)
$$p \rightarrow p \lor q$$

$$(C) \ [(p \to r) \land (q \to r)] \to [(p \land q) \to r]$$

(D)
$$[p \land (p \rightarrow q)] \rightarrow q$$

3. For the following functions, which is **not** a one-to-one function?

(A) f : **Z**
$$\to$$
 Z, f(x) = 2x + 1

(B)
$$f : \mathbf{O} \to \mathbf{O}, f(x) = 2x + 3$$

(C)
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(x) = x^3 - x$

(D)
$$f : \mathbf{R} \to \mathbf{R}, f(x) = e^x$$

- 4. Let \emptyset denote the empty set; A, B and C are any sets taken from a universe \mathcal{U} . Which statement in the following is true?
 - $(A) \varnothing \in \varnothing$

(B)
$$A \cap (A \cup B) = B$$

$$(C) A \cap (B \cup C) = (A \cap B) \cup C$$

(D)
$$A \cup (A \cap B) = A$$

- 5. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$, for binary relations \mathcal{R} defined on $A \times A$: Which of the following statement is true?
 - (A) Define $(x, y) \in \mathcal{R}$, if x y is a multiple of 3, then \mathcal{R} is a partial order.
 - (B) Define $(x, y) \in \mathcal{R}$, if $x \le y$, then \mathcal{R} is a lattice.
 - (C) Define $(x, y) \in \mathcal{R}$, if $x = y^2$, then \mathcal{R} is a equivalence relation.
 - (D) Define $\mathcal{R} = \{(1,2), (2,7), (7,2), (1,7)\}$, then \mathcal{R} is anti-symmetric.
- 二、PART II (6~10). Hand-graded questions (每題 6 分, 共 30 分)
 - 6. Find an Euler circuit for the following graph if there exists.

- 7. An $m \times n$ zero-one matrix with m rows and n columns, such that in row i and column j, the element x_{ij} is either 0 or 1. How many 10×12 zero-one matrices have exactly one 1 in each row and at least one 1 in each column?
- 8. A finite state machine is a five-tuple M = (S, I, O, v, w), where S is the set of states for M; I is the input alphabet for M, O is the output alphabet for M, $v: S \times I \rightarrow S$ is the next state function, $w: S \times I \rightarrow O$ is the output function. Construct a finite state machine M with $I = O = \{0, 1\}$ that recognizes the occurrence of 101 for any input string $\{0,1\}^*$. For example, the input string: 101011110101, then the output string: 001010000101.
- 9. Define the integer sequence $a_0, a_1, a_2, a_3, \ldots$, recursively by
 - (1) $a_0 = 1$, $a_1 = 1$, $a_2 = 1$; and
 - (2) For $n \ge 3$, $a_n = a_{n-1} + a_{n-3}$.

Prove that $a_{n+2} \ge (\sqrt{2})^n$ for all $n \ge 0$.

10. Let $S \subseteq \{1, 2, 3, 4, 5, ..., 9\}$ and |S| = 5. Prove that the sums of the elements in all the nonempty subsets of S cannot all be distinct.

- 三、PART III (11~15). Hand-graded questions (每題 10 分, 共 50 分)
 - 11.If A and B are 3×3 matrices and |A| = -1 and |B| = 2, compute the following determinants. (a) $|3A^2B^{-1}|$ (b) $|(2AB^t)^{-1}|$, where B^t represents the transpose of matrix B.
 - 12. Solve the following system of equations using the method of Gauss-Jordan elimination.

$$\begin{cases} x_1 + x_2 + x_3 - x_4 = -3 \\ 2x_1 + 3x_2 + x_3 - 5x_4 = -9 \\ x_1 + 3x_2 - x_3 - 6x_4 = -7 \\ -x_1 - x_2 - x_3 = 1 \end{cases}$$

- 13. Consider the linear transformation T(x, y) = (3x + 4y, x + 2y) of $R^2 \rightarrow R^2$.
 - (a) Prove that *T* is invertible and find the inverse of *T*.
 - (b) Determine the pre-image of the vector (1, 1).
- 14.Let $u = (x_1, x_2)$ and $v = (y_1, y_2)$ be elements of R^2 . Prove that the following function defines an inner product on R^2 : $\langle u, v \rangle = 4x_1y_1 + 9x_2y_2$.
- 15. Find a matrix P that orthogonally diagonalizes the following matrix A, and determine $P^{-1}AP$.

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}.$$