國立臺南大學102學年度 資訊工程學系碩士班 招生考試 離散數學與線性代數 試題卷

一，PART I（1～5）．Multiple－choice questions（每題 4 分，共 20 分）

1．For integer $\mathrm{n} \geq 1, \mathrm{r} \geq 1$ ，and $\mathrm{n} \geq \mathrm{r}$ ，which equation in the following is true？
（A）$\binom{2 n}{1}+\binom{2 n}{3}+\binom{2 n}{5}+\cdots+\binom{2 n}{2 n-1}=\binom{2 n}{2}+\binom{2 n}{4}+\cdots+\binom{2 n}{2 n}$
（B）$\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{1}{n+1}\binom{2 n}{n}$
（C）$\binom{n+1}{r}=\binom{n}{r-1}+\binom{n+1}{r-1}$
（D）$\sum_{i=1}^{n}(i)(i!)=(n+1)$ ！
2．Let p, q and r be statements．The logical connectives are \wedge ：conjunction，\vee ：
disjunction，\rightarrow ：implication，\neg ：not．Consider the following statements，which statement is not a tautology？
（A）$[(\mathrm{p} \wedge \mathrm{q}) \vee[(\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})]] \rightarrow \mathrm{r}$
（B） $\mathrm{p} \rightarrow \mathrm{p} \vee \mathrm{q}$
（C）$[(\mathrm{p} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow[(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}]$
（D）$[\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})] \rightarrow \mathrm{q}$
3．For the following functions，which is not a one－to－one function？
（A） $\mathrm{f}: \mathbf{Z} \rightarrow \mathbf{Z}, \mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$
（B） $\mathrm{f}: \mathbf{Q} \rightarrow \mathbf{Q}, \mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$
（C） $\mathrm{f}: \mathbf{Z} \rightarrow \mathbf{Z}, f(x)=\mathrm{x}^{3}-\mathrm{x}$
（D）f： $\mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$
4．Let \varnothing denote the empty set；A, B and C are any sets taken from a universe $\%$ ． Which statement in the following is true？
（A）$\varnothing \in \varnothing$
（B） $\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{B}$
（C） $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup \mathrm{C})$
（D） $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$

5．Let $A=\{1,2,3,4,5,6,7\}$ ，for binary relations \mathbb{R} defined on $A \times A$ ：
Which of the following statement is true？
（A）Define $(\mathrm{x}, \mathrm{y}) \in \mathcal{R}$ ，if $\mathrm{x}-\mathrm{y}$ is a multiple of 3 ，then R is a partial order．
（B）Define $(\mathrm{x}, \mathrm{y}) \in \mathcal{R}$ ，if $\mathrm{x} \leq \mathrm{y}$ ，then R is a lattice．
（C）Define $(\mathrm{x}, \mathrm{y}) \in \mathcal{R}$ ，if $\mathrm{x}=\mathrm{y}^{2}$ ，then \mathcal{R} is a equivalence relation．
（D）Define $\mathbb{R}=\{(1,2),(2,7),(7,2),(1,7)\}$ ，then \mathbb{R} is anti－symmetric．

二，PART II（6～10）．Hand－graded questions（每題 6 分，共 30 分）

6．Find an Euler circuit for the following graph if there exists．

7．An $m \times n$ zero－one matrix with m rows and n columns，such that in row i and column j ，the element $x_{i j}$ is either 0 or 1 ．How many 10×12 zero－one matrices have exactly one 1 in each row and at least one 1 in each column？

8．A finite state machine is a five－tuple $M=(S, I, O, v, w)$ ，where S is the set of states for M ；I is the input alphabet for M, O is the output alphabet for $M, v: S \times I \rightarrow S$ is the next state function，$w: S \times I \rightarrow O$ is the output function．Construct a finite state machine M with $I=O=\{0,1\}$ that recognizes the occurrence of 101 for any input string $\{0,1\}^{*}$ ．For example，the input string：101011110101，then the output string： 001010000101.

9．Define the integer sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ ，recursively by
（1）$a_{0}=1, a_{1}=1, a_{2}=1$ ；and
（2）For $n \geq 3, a_{n}=a_{n-1}+a_{n-3}$ ．
Prove that $a_{n+2} \geq(\sqrt{2})^{n}$ for all $n \geq 0$ ．
10．Let $S \subseteq\{1,2,3,4,5, \ldots, 9\}$ and $|S|=5$ ．Prove that the sums of the elements in all the nonempty subsets of S cannot all be distinct．

三，PART III（11～15）．Hand－graded questions（每題 10 分，共 50 分）

11．If A and B are 3×3 matrices and $|\mathrm{A}|=-1$ and $|\mathrm{B}|=2$ ，compute the following determinants．（a）$\left|3 \mathrm{~A}^{2} \mathrm{~B}^{-1}\right|$（b）$\left|\left(2 \mathrm{AB}^{t}\right)^{-1}\right|$ ，where B^{t} represents the transpose of matrix B ．

12．Solve the following system of equations using the method of Gauss－Jordan elimination．

$$
\left\{\begin{array}{c}
x_{1}+x_{2}+x_{3}-x_{4}=-3 \\
2 x_{1}+3 x_{2}+x_{3}-5 x_{4}=-9 \\
x_{1}+3 x_{2}-x_{3}-6 x_{4}=-7 \\
-x_{1}-x_{2}-x_{3}=1
\end{array}\right.
$$

13．Consider the linear transformation $\mathrm{T}(x, y)=(3 x+4 y, x+2 y)$ of $R^{2} \rightarrow R^{2}$ ．
（a）Prove that T is invertible and find the inverse of T ．
（b）Determine the pre－image of the vector $(1,1)$ ．

14．Let $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$ be elements of R^{2} ．Prove that the following function defines an inner product on $R^{2}:\langle u, v\rangle=4 x_{1} y_{1}+9 x_{2} y_{2}$ ．

15．Find a matrix P that orthogonally diagonalizes the following matrix A ，and determine $\mathrm{P}^{-1} \mathrm{AP}$ ．

$$
\mathrm{A}=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 3
\end{array}\right]
$$

