所別:光電科學與工程學系碩士班 不分組(一般生) 科目:電子學 共 🖊 頁 第 📗 頁

光電科學與工程學系碩士班 不分組(在職生) 本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

1. Figure 1 shows an op-amp circuit for 4-bit digital-to-analog converter (DAQ), which can convert a 4-bit digital word $a_3a_2a_1a_0$ to an analog output. The value of each bit is represented by a corresponding switch. That is, if a_0 is 1 then switch S_0 connects to the +5-V power supply, while if a_0 is 0 then switch S_0 connects to ground.

(a) Find
$$R_1$$
 and R_2 so that $vo = -\frac{R_3}{8} (2^0 a_0 + 2^1 a_1 + 2^2 a_2 + 2^3 a_3)$. (10%)

- (b) Find R_3 so that v_o ranges from 0 to 24 volts. That is, the digital words 0000 and 1111 are converted to 0 V and -24 V, respectively. (5%)
- (c) Based on this circuit, please design an op-amp circuit which can convert a 4-bit digital word to an analog output ranging from 0 to 12 V. Any reasonable scheme is allowed. (10%)

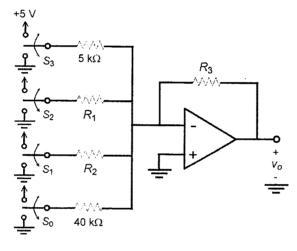
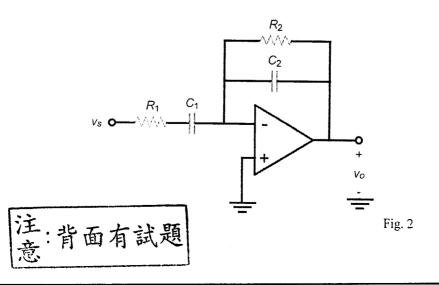
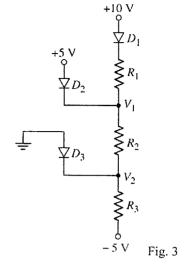



Fig. 1

- 2. For an active filter shown in Figure 2, please answer the following questions:
 - (a) Determine the transfer function $\mathbf{H}(s) = \mathbf{Vo/Vs}$, where $s = j\omega$. (5%)
 - (b) Show that this active filter is a band-pass filter. (3%)
 - (c) For $R_1 = 1 \text{ k}\Omega$ and $C_2 = 0.1 \mu\text{F}$, find R_2 and C_1 so that the band-pass filter has a resonant frequency at 500 rad/s. (6%)
 - (d) Draw the Bode plot for the magnitude of the band-pass filter in (c). (5%).
 - (e) For the band-pass filter in (c), find the bandwidth B and quality factor Q. (6%)



科目: 電子學 共 ≥ 頁 第 ≥ 頁 所別:光電科學與工程學系碩士班 不分組(一般生) 光電科學與工程學系碩士班 不分組(在職生)

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

- The cut-in voltage for each diode in Fig. 3 is $V_{\gamma} = 0.5 \text{ V}$.
 - (a) Find V_1 and V_2 and each diode current for $R_1 = 2 \text{ K}\Omega$, $R_2 = 3 \text{ K}\Omega$, and $R_3 = 2 \text{ K}\Omega$. (5%)
 - (b) Define the load line of diode D₃ in this circuit. (5%)

- For the circuit in Figure 4, the parameters are $V_{TN} = 1.5 \text{ V}$ and Kn = 0.6 mA/V^2 for transistors M₁ and M₂.
 - (a) Determine that I_D , V_{GSI} , V_{DSI} , V_{GS2} , and V_{DS2} for transistors M_1 and M2, respectively. (5%)
 - (b) Define the load lines for transistor M_1 . (5%)
 - (c) Sketch the current-voltage characteristics of transistors M₁ and M_2 . (10%)

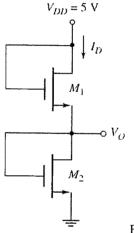


Fig. 4

- 5. A common-gate circuit shown in Figure 5. The transistor parameters are $V_{TN} =$ 0.5 V, $Kn = 2 \text{ mA/V}^2$, and $\lambda = 0$, $C_{gs} = 10 \text{ pF}$, $C_{gd} = 2 \text{ pF}$. (a) Determine the upper 3 dB frequency. (10%)

 - (b) Determine the midband voltage gain. (10%)

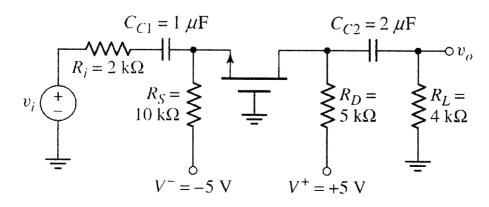


Fig. 5