國立東華大學招生考試試題第一月,共2頁

招	生鸟	阜 年	度	102	招	生	類	別	碩士班	
系	所	班	别	光電電子碩士班聯合招生 (光電工程學系碩士班、電機工程學系 電子工程碩士班)						
科			目	電子學						
注	意	事	項	本考科可使用掌上型計算機						

1. (10%) A Si pn junction employs $N_A=10^{17}$ cm⁻³ and $N_D=10^{16}$ cm⁻³ (a) Estimate the minority carrier concentrations on both sides at room temperature. (b)Calculate the built-in potential. (c) To obtain a current of 1 mA with a forward bias of 0.7 V, how should the saturation current (I_S) be chosen?

2. (20%) As depicted in Fig.1, $I_{S1}=I_{S2}=5\times10^{-16}$ A, $\beta_1=\beta_2=100$, and $V_A=\infty$. Assume the capacitance (C) is very large. (a) Draw the small-signal equivalent circuit. (b) Find voltage gain (ν_{out}/ν_{in}) . (c) Determine the input impedance (R_{in})

3. (20%) (a) Compute W/L of M_1 in Fig.2 such that the device operates at the edge of saturation. Assume $V_{DD}=1.5$ V, $V_{TH}=0.4$ V, $\lambda=0$, $\mu_n C_{ox}=200$ μ A/V². (b) What happens if the gate oxide thickness is doubled (in triode or saturation? Why?)? Then, what is the voltage gain as a common-source (CS) amplifier?

4. (10%) For the circuit in Fig.3, let the op-amp saturation voltages be ± 10 V, $R_1=100k\Omega$, $R=R_2=1M\Omega$ and $C=0.01\mu F$. Find the frequency of oscillation.

國立東華大學招生考試試題第三頁,共2頁

招	生學	车	度	102	招	生	頻	別	碩士班
系	所	班	別	光電電子碩士班聯合招生 (光電工程學系碩士班、電機工程學系 電子工程碩士班)					
科			且	電子學					
注	意	事	項	本考科可使用掌上型計算機					

- 5. (20%) Design the KHN high-pass filter in Fig.4, with f_0 =10kHz and Q=2. Choose C=1nF and R_1 = R_2 = R_f =10k Ω .
 - (a) What are the values of R and R₃?
 - (b) What is the value of high-frequency gain obtained?

Fig.4

- 6. (5%) Design a CMOS logic gate circuit which performs the function of $Y = \overline{A(B+CD)}$.
- 7. (15%) The cascode amplifier in Fig.5 is operated at a current of 0.2mA with all devices operating at $|V_{OV}| = 0.2V$. All devices have $|V_A| = 2V$.
 - (a) Find g_{m1} and r_{o1} .
 - (b) Find the overall output resistance and the voltage gain realized.

