	T			<u> </u>	<i>ــلد</i>	木	平	入	乎	招	王	亏	部人	颜	规	第貝,共貝
3	生	學年	度	102					招	生	類	別	碩士	班		
Ŕ	所	班	別	光電電子碩士班聯合招生 (光電工程學系碩士班、電機工程學系 電子工程碩士班)												
半			目	近代	物理											
E	意	事	頂	太老4	外可体	用堂)	上刑計	質機:	內欠亡	1近代	物理	導論 為	5 ‡ 0			

- 1. (10%) Please plot the Fermi-Dirac distribution ($f_{FD}(E)$) at (a) T = 0K (b) T > 0K. Please remember to point out the position of Fermi-Level(E_F) in x-axis.
- 2. (10%) If we use metal A (high work function) and metal B (low work function), respectively, as the cathode material in "Photoelectric Effect" experiment. Which one will have the lower value of stopping potential?
- 3. (10%) A star is away from earth with a velocity of $5 \times 10^{-3} c$. Compute the wavelength change of the sodium D_2 line, 589nm, according to the Doppler Effect.
- 4. (10%) The energy of a particle is equal to 2.5 x 10^{-12} J, its momentum is 7.9 x 10^{-21} N s. What are its mass m and velocity v?
- 5. (10%) An electron is constrained to bounce between two reflecting walls placed at a distance $d = 10^{-9}$ m from each other. Assuming that, as in the case of a stationary electromagnetic wave confined between two parallel mirrors, the distance d be equal to n half wavelengths, determine the possible values of the electron energy as a function of n.
- 6. (10%) A monochromatic light with light intensity of I_0 normally impinges a material with absorption coefficient of α mm⁻¹. Assume that the intensity becomes $0.5I_0$ as the passing through the material with a thickness of 8mm. Find the absorption coefficient of the material, α .
- 7. (10%) Halogens have one fewer electron than the inert gases. Please write down the electron configurations of fluorine (F), chlorine(Cl) and bromine (Br).
- 8. (10%) An electron is trapped in a one-dimensional potential well with a barrier height of 3eV. Assume that the thickness of the well 1nm. Find the lowest energy state in the potential well.
- 9. (10%) (a) Please write down the 1-D time-dependent Schrödinger equation. (b) Please write down the 1-D time-independent Schrödinger equation.
- 10. (10%) For an electron in the hydrogen atom, if the angular momentum quantum number l = 3: (a) What are the possible values of L_Z (the z component of angular momentum)? (b) What is the magnitude L (the angular momentum)?