招	生鸟	声 年	度	102	招	生	類	別	碩士班
系	所	班	别	生命科學系 生物技術碩士班(甲組)、材料科學與工程學系碩士班					
科			且	物理化學					
注	意	事	項	本考科可使用掌上型計算機				-	

- 1. The standard enthalpy of formation of NH_{3(g)} at 298 K is -46.11 kJ/mol. Estimate its value at 400 K. Use: $C_{p,m}^{O}$ (H₂) = 28.824 JK⁻¹mol⁻¹, $C_{p,m}^{O}$ (N₂) = 29.125 JK⁻¹mol⁻¹, $C_{p,m}^{O}$ (NH₃) = 35.06 JK⁻¹mol⁻¹. (20 $\frac{1}{2}$)
- 2. Calculate the change in the molar Gibbs energy of liquid water treated as an incompressible fluid, when the pressure is increased isothermally from 1 bar to 2 bar at 298 K. (1 bar = 10⁵ Pa, density of water = 1 g/cm³) (20 分).
- 3. Estimate the vapor pressure of sea water at 20°C given that the vapor pressure of pure water is 2.338 kPa at that temperature and the solute is NaCl at 0.5 mol NaCl/L water. (20分)
- 4. An alternative mechanism that may apply when the concentration of O₂ is high and that of NO is low is one in which the first step is NO + O₂ → NO---O₂ (rate constant : k_a) and its reverse (rate constant: k_a·), followed by NO---O₂ + NO → NO₂ + NO₂ (rate constant : k_b). Prove that this mechanism leads to the observed third –order rate law when the concentration of NO is low. (Use the steady-state approximation) (20 分)
- 5. A point mass rotates in a circle with the quantum number L = 2. Calculate the magnitude of its angular momentum and draw the vector diagram for all possible projections of the angular momentum on z-axis. (E=L(L+1)ħ²/2I) (20分)