				國	立	東	華	大	學	招	生	考	試	試	題	第
招	生生	學 年	度	102					招	生	類	別	碩士	班		
系	所	班	別	材料科	學與工	程學系石	頁士班									
科			目	冶金	熱力	學										
注	意	事	項	本考和	斗可使	用掌_	上型計	算機								
					· · · · · · · · · · · · · · · · · · ·											
			單選	題(25 x	4% = 1	100 %)										
				ich of the				ate func	tion?							
			(1)	PV work	(2)	entropy	(3)	angula	r momen	t (4) i	interna	l energy	y (5)	temper	ature	
			2. For	the char	nge of s	standard	l state v	$V_{(s)}=V_{(1)}$	wt% in Fe)•	ΔG^0 =	= -154	80 – 45	.61 <i>T</i> J. T	he val	ue of vº	at 1600°C is
				•											or 1v	at 1000 C IS
			(1)	0.0014	(2) 0.	014	(3) 0.14	4 (4) 1	1.4 (5)	14.						
			3.	The :	EMF	of	the	cell	$Ag_{(s)}$	AgCl ₍	$_{s)} \mid Cl_{2}$	$_{(g,1tam)}, I$	Pt	is	found	to be
			$\varepsilon(volt)$	(s) = 0.97	7 + 5.7	×10 ⁻⁴ (3	350 - t	-4.8×						σe t =	100°C to	$t = 450^{\circ} C.$
			The va	alue of Δ	Cp for t	the cell	reaction	n is	JK	-1mole	·I	I		50 1	100 0 10	750 C.
			(1)	0.145	(2) -2.3	361 ((3) 63.2	25 (4)	1.562 (5) -0.	.093.					
			4. For	an ideal	gas, P	V ^γ =210).3, who	ere γ=c _r	o/c _v . Afte	r a rev	ersible	adiaba	atic proc	ess, the	e pressure	e of system
		j							5 (5)	_	n.				•	
				•	,	()		(1)		00.5.						
		:	5. C _p	$-C_{\nu} =$												
		($(1) \ \left(\frac{\partial z}{\partial x}\right)$	$\left[\frac{S}{T}\right]_{P}\left[T\left(\frac{\partial S}{\partial V}\right)\right]$	$\begin{bmatrix} 1 \\ r \end{bmatrix}$ (2)	$(\frac{\partial V}{\partial T})$	$\int_{P} \left[T \left(\frac{\partial S}{\partial V} \right) \right]$	$\begin{bmatrix} 1 \\ T \end{bmatrix}$ (3	$\left(\frac{\partial V}{\partial T}\right)_{p} \left[$	$T\left(\frac{\partial P}{\partial V}\right)_{T}$	(4)	$\left(\frac{\partial H}{\partial T}\right)_{P}$	$r\left(\frac{\partial S}{\partial V}\right)_{T}$	(5)	$\left(\frac{\partial V}{\partial T}\right)_{p} \left[T\left(\frac{\partial A}{\partial V}\right)\right]$	$\left(\frac{1}{r}\right)_{T}$
		ć	б. Оху	gen gas	stored	at a pre	essure o	of 200 a	atm at 30	00 K in	a cyl	indrical	vessel o	of dian	neter 0.2	meters and
		ł	neight	2 meters.	. The va	an der V	Waals c	onstant	for oxyg	en are	a = 1.3	66 L ² atn	n/mole a	nd b =	0.0318 L	/mole. The
		2.							5) 102.		S.					
		7	7 One	mole of l	No gas i	ic conta	ined of	272 V a	and a man		C 1	701	1 10.0	22000		
		g	gas at c	constant p	pressure	e causes	s 832 jo	oules of	work to	be don	ı ı aım e duri	$\frac{1}{2}$	adition o expansion	13000 n. C _v o	joules of N ₂ gas:	heat to the
		J	mol-1	K ⁻¹ .					7 (5)						_	
			(1) 0	.0217		1 (3)	1 4.1 /	(4) 21.	/ (3)	217.						
		8	. A sil	ver-gold	alloy is	s a rand	lom mix	xture of	gold and	d silver	atoms	s. The g	ram ator	nic we	ights of A	Au and Ag
		a. tł	ne incr	ease in e	.o, respo ntropy i	ectively is	. When	1 10 g o1 J/K	t gold are	mixed	with 2	20 g of :	silver to	form a	homoger	neous alloy,
			(1) -1	6.8 (2)	-8.34	(3) 1.0)2 (4)	9.20	(5) 13.6.							
		9.	. A CC	₂ -CO-H ₂	O-H ₂ g	as mixt	ure at a	ı total pı	ressure o	f 1 atm	exerts	a partis	al pressin	re of or	vygen of	10 ⁻⁷ atm at
		10	600°C.	The Gil	bbs fre	e energ	y of re	action	$CO_2 + H$	$T_2 \to H$	C_2O+C	CO at 1	1600°C i	s -142	982 J. TI	he ratio of
		C		is 1276		⁷ 6 (3) 12.76	(4) 1	27.6 (5) 127	6.					
l					-	`	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(-)	,						

				四		木	平	大	字	招	生	考	試	試	題	第
招	生鸟	车	度	102					招	生	類	別	碩士:	旺		
系	所	班	別	材料科	學與工和	呈學系可	頁士班						W. 10			
科			目	冶金	熱力學	——— 學										
注	意	事	項	本考和	斗可使	用掌」	上型計	算機								
			10.	The ac	tivity	coeffic	ient of	f Zn	in lia	uid 7n	Cd. o	llova	at 1250c	٦.	1	presented as
													at 435 $ ext{C}_{ ext{Cd}}$ =0.5 $ ext{a}$			resented as
) 0.247	(2) 0.		(3) 0.45					moy of	A _{Cd} =0.5 8	at 435°	C 1S	·
			•		` ,											
			11. C	Copper ex	kists in	the stat	e T = 29	98 K, P	= 1atm	. The m	olar vo	olume o	f copper	at 298	K is 7.09	cm ³ and the
			press	sure to 10	000 atm	at 298	х 10 Кiseaa	K In	tne ran	ge I-10 atm by i	00 atm	The en	ntropy in emperatur	creaser	nent by i	ncreasing its
			(1)	327	(2) 458	(3) 5	89 (4)	1027	(5) 3	012.	iicicasi	ng ns u	emperatur	e 10		K.
			12. T	he norm	al boili	ng temr	erature	of iron	ia 3331	ነገፖ ጥጌ	o moto o	* .f .h	C 41			f liquid iron
			with	temperat	ure is 3	72×10^{-1}	0 ⁻³ atm/]	K. The	molar la	atent hea	at of bo	or chang oiling of	ge of the value of	apor p	oressure o	f liquid iron
			(1)	342376	4 (2)	34237	6.4 (3) 3423	7.64	(4) 3423	3.764	(5) 34	42.3764.	350 IK.		J.
			13.	The o	constant	pres	ssure	molar	heat	canac	ity o	f SiC	varies	*****	h taman	one to a se
			$C_P =$	50.79+	1.97×10	$0^{-3}T - 4$	4.92×10	$0^6 T^{-2} +$	8.2×10	$)^{8}T^{-3}$ J	mol ⁻¹	K ⁻¹ .	When 1	molar	of SiC is	erature as s heat from
			25°C	to 1000°	C, the c	hange o	of entrop	py is		_ J/K.						
			(1)	5970	(2) 597	(3)	59.7	(4) 5.97	(5)	0.597.						
			14. T	he mola	r volum	es of s	olid and	d liquid	lead a	t the no	rmal n	nelting 1	temperatu	re of l	lead are r	espectively,
			18.92	cm ³ and	19.47	cm³. Tl	he melti	ing enth	nalpy is	4810 J.	In ord	ler to in	crease its	meltir	ng temper	espectively, eature 20°C,
			(1)			3) 282	atr (4) 282		2822	23						
						•										
			15. TI	ne vapor	pressur	e of sol	lid CO ₂	is give	n as ln	p(atm)	$=-\frac{31}{7}$	$\frac{16}{7} + 16$.	.01. The t	riplet j	point is -5	56.2°C. The
																at 25 °C is
				atm										, ,		
			(1)	93.3 (2) 73.3	(3)	53.3 (4) 33.3	(5)	13.3.						
				ıs consta					•							
				8.314 J K			(2) 3.14				(3) 5	5.19×10	19 eV K ⁻¹	mol^{-1}		
			(4)	1.987 cal	K 'mo	1-1	(5) 0.08	82 L atr	n K ⁻¹ m	.ol ⁻¹ .						
		1	17. Th	e partial	pressure	e of oxy	ygen in	equilib	rium wi	th pure	liquid l	lead and	l pure liqu	uid lea	d oxide a	t 1200 K is
		2	2.16X1	0° atm.	When	SiO_2 is	added	to the	liquid]	PbO to	form a	lead s	ilicate me	elt the	Oxygen i	recoure in
		t.	quint he lea	rium wii d silicate	n pure melt is	nquid i	ead and	the sil	ıcate m	elt is de	ecreases	s to 5.4	1x10 ⁻¹⁰ at	m. Th	e activity	of PbO in
			(1) ((4) 0.	6 (5)	0.7.							
••		1	Q A		. 1											
		r	o. A i eservo	eversible irs are, i	neat ei nitially.	igine, o at the t	operating emperation	g in a c tures T	ycle, w and Ta	ithdraw	s heat f	from a l	high temp	erature	e reservoi	r. The two espectively.
		7	n ~	• •				1		, AIU	. C COIL	mark HO	ur capacit	ios CI	ани С 2, г €	specuvery.

The finial temperature of the system is _____.

國 立 大 招 試 試 題

招生學年度 102 碩士班 招 生 類 别 系 所 班 别 材料科學與工程學系碩士班 科 冶金熱力學 目 注 本考科可使用掌上型計算機 意 項

(1)
$$\sqrt{(T_1 + T_2)}$$
 (2) $\frac{1}{2}(T_1 + T_2)$ (3) $(T_1^{c_1} + T_2^{c_2})^{\frac{1}{C_1 + C_2}}$ (4) $(T_1^{c_1} T_2^{c_2})$ (5) $(T_1^{c_1} T_2^{c_2})^{\frac{1}{C_1 + C_2}}$.

19. For $2Ni_{(s)} + O_2 = 2NiO$, $\Delta G^0 = -471200 + 172T$ J. For $2NiO = 2Ni_{(l)} + O_2$, $\Delta G^0 = 506180 - 192.2T$ J. The molar entropy of melting of nickel is _____ J/K. (2) 10.1(3) 23.5 (4) 37.1 (5) 47.5.

20. $4MgO_{(s)} + Si_{(s)} = 2Mg_{(g)} + Mg_2SiO_4$, the molar reaction Gibbs free energy at 1400°C is 183474 J. The vapor pressure of Mg exerted at 1400°C by the system is _____ atm. $(1) 2.42 \times 10^{-8}$ $(2) 2.42 \times 10^{-6}$ (3) 2.42×10^{-4} (4) 2.42×10^{-2} (5) 2.42.

21. For a real gas P(V-b)=RT, $C_p-C_v=$ (1) R (2) bR (3) R/b^2 (4) R/b (5) None is correct.

$$22. \left(\frac{\partial T}{\partial V}\right)_{S} = \underline{\qquad} (1) - \left(\frac{\partial S}{\partial P}\right)_{V} (2) - \left(\frac{\partial P}{\partial S}\right)_{V} (3) \left(\frac{\partial P}{\partial S}\right)_{V} (4) - \left(\frac{\partial P}{\partial S}\right)_{T} (5) \left(\frac{\partial S}{\partial P}\right)_{V}.$$

23. The solid Cu-Au system is virtually regular in its solution behavior, with a molar Gibbs excess free energy of mixing given by $G^{XS} = -28280 X_{Au} X_{Cu} J$ at 600°C. When $X_{Cu} = 0.5$ at 600°C, the activity of Cu is

(1) 0.0888(2) 0.1888(3) 0.2888 (4) 0.3888 (5) 0.4888.

24. Spectroscopic observation of molecular N2 in an electrical discharge shows that the relative numbers of molecules an excited vibrational states with energies given by $\varepsilon_i = \left(i + \frac{1}{2}\right)hv$, where i is an integer value in the range zero to infinity, h is Planck's constant of action (6.6252 x 10^{-34} J s), and v is the vibration frequency $(7.00 \times 10^{13} \text{ s}^{-1})$. When i are 0, 1, 2, and 3, $n_i/n=1.00$, 0.250, 0.062, and 0.016, respectively. The temperature of the gas is _____ K.

(1) 151(2) 302 (3) 605 (4) 1210 (5) 2420.

25. According to IUPAC convention, the expression of work w, if negative for a system in adiabatic enclosure, implies all of the following, except.

(1) The internal energy of the system has changed (2) work has been done by the system (3) the internal energy of the universe is the same (4) the entropy change of system is zero, (5) a negative mount of work has been done on the system.