國 招 第____ 頁,共____ 頁

招	生	& 年	度	102	招	生	類	别	碩士班
系	所	班	別	材料科學與工程學系碩士班					
科			目	材料科學與工程					
注	意	事	項	本考科可使用掌上型計算機		***************************************		•	

- 1. Please explain the following terms: (15%)
- (a) Segregation
- (b) Supercooling
- (c) Ductile-to-brittle transition
- (d) Intermetallic compound
- (f) Creep
- 2. A diffracted x-ray beam is observed from the (311) planes of aluminum at a 2θ angle of 78.3° when x-rays of 0.15418 nm wavelength are used.
 - (a) Calculate the lattice parameter of the aluminum. (6%)
 - (b) Determine the planar density and packing fraction for aluminum in the (100), (110), and (111) planes. (6%)
- 3. (a) How does the slip system inference the ductility of BCC, FCC, and HCP metals. (6%)
 - (b) Please explain and sketch 12 slip systems for FCC? (6%)
- 4. (a) Please explain how dislocations, residual stresses, mechanical properties are involved in the recovery and recrystallization processes? (6%)
 - (b) Why is it that recrystallization temperature is not fixed temperature for a given materials? (4%)
 - (c) Why nanoscale oxide particles can inhibit the recovery and recrystallization processes and offer high creep strength in dispersion strengthened alloys (6%)
- 5. (a) Please explain how dislocations are involved in each of strengthening mechanisms in metals. (6%)
 - (b) Which strengthening method is unaffected by heat treatment and explain why? (6%)
- 6. A 1015 steel is to be carburized at 1050°C for 2 h using a gas atmosphere that produces 1.2% C at the surface of the steel. (Please see the tables below for "diffusion data" and "error function")
 - (a) Plot the percent carbon versus the distance (x=0.03cm, 0.05cm, 0.13cm, and 0.25cm) from the surface of
 - (b) If the steel is slowly cooled after carburizing, determine the amount of each phase and microconstituent at 0.18 cm intervals from the surface. (8%)

Diffusion data for selected materials

Error function value for Fick's second law

Diffusion Couple	Q (cal/mol)	$D_0 (\mathrm{cm}^2/\mathrm{s})$
Interstitial diffusion:	kimusi ing mga yinama s ami nasa mfa salahan ahina asistore ada	and the contract of the Contra
C in FCC iron	32,900	0.23
C in BCC iron	20,900	0.011
N In FCC iron	34,600	0.0034
N in BCC iron	18,300	0.0047
H in FCC iron	10,300	0.0063
H in BCC iron	3,600	0.0012

Argument of the Error Function $\frac{x}{2\sqrt{Dt}}$	Value of the Error Function erf $\frac{x}{2\sqrt{Dt}}$
0	0
0.10	0.1125
0.20	0.2227
0.30	0.3286
0.40	0.4284
0.50	0.5205
0.60	0.6039
0.70	0.6778
0.80	0.7421
0.90	0.7969
1.00	0.8427
1.50	0.9661
2.00	0.9953

- 7. (a) In phase transformation mechanisms, please distinguishes homogeneous and heterogeneous nucleation by
 - "critical free energy ΔG^* " (6%). (b) Please sketch the cures for nucleation rate, growth rate, and overall transformation rate versus temperature and describe the terms and their relationship (6%).
 - (c) Please explain how the nucleation rate and growth rate inference the final grain size. (6%)