國立聯合大學 102 學年度碩士班考試招生

		電機工程研究所	入	學	考試	試題
科	目:	工程數學	第_	1	_頁共_	_2_頁
		Show the details of your w	vork			

- 1. Solve the following differential equations:
 - (a) $xy' + y = (xy)^{\frac{5}{2}}$ (7%)

(b)
$$y'' + 4y' + 13y = \frac{1}{3}e^{-2t}\sin 3t$$
, $y(0) = 1$, $y'(0) = -2$ (8%)

- 2. (a) Find the inverse Laplace transform of the function $F(s) = \frac{b}{s^3(s+a)}$; a,b are positive real number.

 (7%)
 - (b) Solve the following differential-integral equation. (Hint: Applying Laplace transform and convolution theorem) $y'(t) + y(t) \int_0^t y(v) \sin(t-v) dv = -\sin t$, y(0) = 1 (8%)
- 3. (a) Find the fourier series in real form of the following function (9%)

$$f(x) = |3x|, -2 < x < 2, f(x+4n) = f(x)$$

(b) Find the fourier series in complex form of the following function (6%)

$$f(x) = e^{2x}$$
, $-\pi < x < \pi$, $f(x + 2n\pi) = f(x)$

- 4. (a) If f(z) is analytic in a simply connected domain D, then for every simple closed path C in D, Show that $\iint_C f(z)dz = 0$ using Green's theorem and Cauchy-Riemann Equations. (8%)
 - (b) Calculate the complex line integral $\iint_c \frac{1}{z^2 1} dz$, using residue theorem.

where C: (1)
$$|z| = \frac{1}{2}$$
, (2) $|z-1| = 1$, (3) $|z+1| = 1$, (4) $|z| = 2$ (1.2%)

國立聯合大學 102 學年度碩士班考試招生

5.(a) Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and that T(1,0) = (1,4), T(1,1) = (2,5).

- (1) What is T(3,5)? (6%)
- (2) What is the null space of T? (3%)
- (3) What is the range of T? (3%)

(b)Let
$$\begin{cases} x_{k+1} = \frac{1}{2}x_k + y_k \\ y_{k+1} = \frac{1}{16}x_k + \frac{1}{2}y_k \end{cases}$$
 (k = 0,1,2,.....) and $x_0 = 0$, $y_0 = 1$, find x_n and y_n (13%)

6. Let $\vec{F} = xy\vec{i} + yz\vec{j} + xz\vec{k}$, calculate surface integral $\iint_S \vec{F} \cdot \vec{n} dA$ using gauss divergence theorem, where S is the bounding surface (with outer unit normal \vec{n}) of the unit cube by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$. (10%)