國立中央大學101學年度碩士班考試入學試題卷

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

- 1. (10 points) Let A be a 3×3 real matrix with characteristic polynomial $x^3 x$. Then find a diagonal matrix similar to A. Prove your answer.
- 2. (10 points) Let

$$A = \left[\begin{array}{rrr} 1 & 8 & -2 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{array} \right].$$

Express A^{-1} as a polynomial of A. Prove your answer.

3. (10 points) Let A be the real matrix

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1 \end{array} \right].$$

Find the values of the parameters a, b and c for which the matrix A is diagonalizable. Prove your answer.

4. (10 points) Let

$$A = \left[\begin{array}{ccc} 0.4 & 0.2 & 0.3 \\ 0.2 & 0.4 & 0.3 \\ 0.4 & 0.4 & 0.4 \end{array} \right].$$

Find $\lim_{n\to\infty} A^n$. Prove your answer.

5. (10 points) Let A be the matrix

$$\left[\begin{array}{ccc} s & -1 & 0 \\ -1 & s & -1 \\ 0 & -1 & s \end{array}\right],$$

where $s \in \mathbb{R}$ is a parameter. Find the values of s for which the pairing on the column vectors in \mathbb{R}^3

$$\langle v, w \rangle = v^T A w$$

is an inner product. Prove your answer.

- **6.** (10 points) Suppose that $A = -A^T$ (such a matrix A is called *skew-symmetric*). Show that I + A is invertible, where I is the identity matrix of the same dimension as A.
- 7. (20 points) Let A be an $n \times n$ matrix of rank r where 0 < r < n and let A be partitioned as

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right],$$

where A_{11} is an $r \times r$ matrix of rank r, and A_{12} is an $r \times (n-r)$ matrix, and A_{21} is an $(n-r) \times r$ matrix, and A_{22} is an $(n-r) \times (n-r)$ matrix. Prove that $A_{22} = A_{21}A_{11}^{-1}A_{12}$.

8. (20 points) If f_1, f_2, \ldots, f_n are continuous functions from the interval [0,1] to \mathbb{R} , all different from the zero-function, and satisfying $\int_0^1 f_i(x) f_j(x) dx = 0$ for all $i, j \in \{1, 2, \ldots, n\}$ with $i \neq j$. Prove that f_1, f_2, \ldots, f_n are linearly independent.