第3節 第/頁,共/頁 - 1. Consider an n-type Silicon photoconductor doped at N_d =10¹⁵ cm⁻³ operating at T=300 K. The cross-sectional area is A=10⁻⁴cm² and the length is L=100 μ m. The carrier mobilities are μ_n =1200 cm²/V-s and μ_p =400 cm²/V-s, and the carrier lifetimes are τ_n = τ_p =0.5 μ s. The photoconductor is uniformly illuminated such that the generation rate of electron-hole pairs is g=10²⁰ cm⁻³s⁻¹. For a voltage of 5-V applied on the photoconductor, - (a) determine the thermal equilibrium current, (6%) - (b) determine the steady-state excess carrier concentration, (6%) - (c) determine the photoconductivity, (6%) - (d) determine the steady-state photocurrent (7%). - 2. An abrupt Si pn junction has $N_a=10^{18}$ cm⁻³ on the p-side and $N_d=10^{16}$ cm⁻³ on the n-side. For Si, the bandgap is $E_g=1.12$ eV, the relative permittivity is $\varepsilon_r=11.8$, and the intrinsic carrier density is $n_i=1.5\times10^{10}$ cm⁻³. Assume that the electron effective mass in the conduction band is the same with hole effective mass in the valence band. - (a) At T=300 K, calculate the Fermi levels and then draw an equilibrium band diagram for the pn junction. (15%) - (b) What is the minimum n-region width such that avalanche breakdown occurs before the depletion region reaches an ohmic contact (punch-through)? The breakdown voltage is $V_{\rm br} = 100~{\rm V}$. (10%) - 3. An ideal n-channel MOSFET has the following parameters: $\mu_n = 10 \text{ cm}^2/\text{V-s}$, W = 1000 μ m, L = 10 μ m, $t_{oxide} = 100 \text{ Å}$, $V_T = 0.5 \text{ V}$, $C_{oxide} = 6.9 \times 10^{-8} \text{ F/cm}^2$ - (1) What are the $I_D(sat)$ for $V_{GS} = 5$, 10, 20, and 30 V, respectively? (10 %) - (2) If $V_{DS}=1$ V, what is I_D for $V_{GS}=5$, 10, 20, and 30 V, respectively? (10 \Re) - (3) What is the different between enhancement mode and depletion mode devices? (5 分) - (4) Is this n-channel MOSFET enhancement mode and depletion mode? (5 分) - 4. What is work function of a metal? If the work function of Ag is 5 eV, calculate the maximum wavelength of light for the photoelectric emission of electrons for Ag. $(10 \, \%)$ Calculate the de Broglie wavelength for an electron with kinetic energy of $1.0 \, \text{eV}$. $(10 \, \%)$