第2節

第(頁,共|頁

- (1) (a) In a cubic unit cell, sketch (103) and [103]. (8%)
 - (b) The crystal structure of dalium (Da) is BCC. Its molar volume is 9.99 cm³ mol. Calculate the linear packing density along [011] in Da. Express your answer in atoms cm⁻¹. (10%)
- (2) Give one example and briefly explain the following types of defect. (a) 0 –dimensional defect (4%), (b) 1–dimensional defect (4%) and (c) 2–dimensional defect. (4%)
- (3) (a) A membrane is to be manufactured to the following specification. At 700° C, the leak rate of hydrogen at steady state is not to exceed 10^{-3} mol cm⁻² hr⁻¹ when the concentrations of hydrogen are maintained at $C_s^{high} = 7.7 \times 10^{19}$ atom cm⁻³ on one side of the membrane and $C_s^{low} =$ effectively zero on the other side. What is the minimum thickness, T, of iron foil that will meet these requirements? The diffusion coefficient of atomic hydrogen in iron, D_H , at 700° C is 3.091×10^{-4} cm² s⁻¹. Express your answer in units of cm. (10%)
 - (b) You are given two specimens of iron, each of identical purity. Specimen A has a grain size of 3.39 micrometer; specimen B has a grain size of 444 micrometer. Which specimen will exhibit a higher rate of diffusion of hydrogen through it? Explain the reason for your choice.(10%)
- (4) (a) Illustrate the typical engineering stress-strain and true stress-strain behaviors, label the corrected stress and explain why the stress needs to be corrected. (5 %)
 - (b) For an alloy, the stress at which plastic deformation begins is 325 MPa, and the modulus of elasticity is 230 GPa.
 - (b-1) What is the maximum load that may be applied to a cylindrical specimen having an original diameter of 10 mm without plastic deformation? (5 %)
 - (b-2) If the original specimen length is 120 mm, what is the maximum length to which it may be stretched without causing plastic deformation? (10 %)
- (5) (a) Sketch the B-H curves of ferromagnetic and ferromagnetic materials and give the meanings of important terms of B-H curve. (5 %)
 - (b). If domain boundary movement were hindered, what would occur on the B-H hysteresis loop? Please sketch it. (5 %)
 - (c) The saturation magnetization flux density (Ms) of Fe_2O_3 is 5.0×10^5 A/m each unit cell contains $8 Fe^{2+}$, and the magnetic moment of Fe^{2+} is 4 Bohr magneton. Now, we want to design the magnet with the saturation magnetization flux density of 4.5×10^5 A/m, what's the content of Fe^{2+} should be replaced by Ni^{2+} ? (The magnetic moment of Ni^{2+} is 2 Bohr magneton) (10 %)
- (6) Please define the light-emitting diodes (LEDs)? What's the working principle of LEDs? (5 %)
- (7) An gold wire 10 m long is cooled from 150 °C to 10 °C. How much change in length will it experience? The coefficient of thermal expansion of gold is 1.4×10^{-5} (1/K) (5 %)