國立中正大學 102 學年度碩士班招生考試試題系所別:光機電整合工程研究所 科目:電子學

第2節

科目:電子學第/頁,共2頁

1. (10%) Fig. P1 shows an NMOS transistor with its drain and gate terminals connected together. Find the $i-\nu$ relationship of the resulting two-terminal device in terms of the MOSFET parameters $k_n = k_n^i(W/L)$ and V_m . Neglect channel-length modulation.

2. (20%) Fig. P2 shows an ideal voltage amplifier having a gain of -100 V/V with an impedance Z connected between its output and input terminals. Find the Miller equivalent circuit when Z is (a) a 1-M Ω resistance (b) a 1-pF capacitance. In each case, use the equivalent circuit to determine V_o/V_{sig} .

3. (20%) Fig. P3 shows a positive-feedback circuit. (a) Find the loop transmission L(s) and the characteristic equation. (b) Sketch a root-locus diagram for varying K, and find the value of K that makes the circuit oscillate.

Fig. P3

第2節

第2頁,共2頁

- 4. The operational amplifier (OPA) shown in Fig. P4 is an ideal OPA, and the switches $S_{i|i=1\sim N}$ are controlled by the controlling signals $b_{i|i=1\sim N}$, respectively.
 - (a) Please derive the output V_0 using known parameters V_{REF} , R, and $b_{||i=1\sim N}$. (10%)
 - (b) In the case of V_{REF} = 2 V, what the minimum bit number (N) of b_i is required to generate an output (V_o) of -1.8125 V and what is the corresponding $b_{i|i=1-N}$. (5%)

- 5. Consider the voltage regulation circuit shown in Fig. P5 for the case of V_{in} = 10 V. Assume the diode D₁ to have a 0.7-V drop at 5 mA current while D₂ is a 6.8-V zener diode with a 6.8-V drop at 5 mA current, and an incremental resistance of 20 Ω. (Note: thermal voltage V_{in} = 25 mV)
 - (a) Determine the line regulation ($\Delta V_{O}/\Delta V_{in}$). (6%)
 - (b) Determine the load regulation ($\Delta V_0/\Delta I_1$). (6%)

- 6. (a) Please sketch the input/output characteristic of a logic inverter, also explain the concepts of noise margin using the input/output characteristic. (5%)
 - (b) Fig. P6 shows an inverter circuit, please find the output high level (V_{OH}) and output low level (V_{OL}). Assume that PMOS transistor Q has the (W/L) ratio of 100, $\mu_p C_{OX} = 50 \ \mu A/V^2$, $\lambda_p = 0 \ V^{-1}$, and $|V_{tp}| = 0.8 \ V$. (10%)

7. Design a row decoder for an 8 words \times 8-bit SRAM, please show the circuit in transistor level. (8%)