國立中正大學 102 學年度碩士班招生考試試題系所別:電機工程學系-電力與電能處理甲組 科目:控制系統

第1節

第 / 頁,共 2/頁

1. (10%) Find the transfer function $\frac{V_{out}(s)}{V_{in}(s)}$ as shown in Fig. 1.

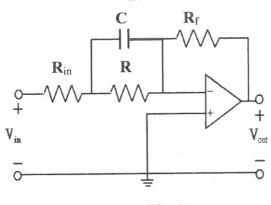


Fig. 1.

- 2. (20%) The block diagram of a control system is shown in Fig 2. The error signal is defined to be e(t).
- (a) Find the steady-state errors in terms of K and K_t when the following inputs are applied (i) $r(t) = u_s(t)$ (ii) $r(t) = tu_s(t)$
- (b) Find the value of K and K_t so that the maximum overshoot is 10 percent and the settling time approximated as $t_s \approx \frac{3.2}{\xi_{W_t}}$ is 0.05sec.

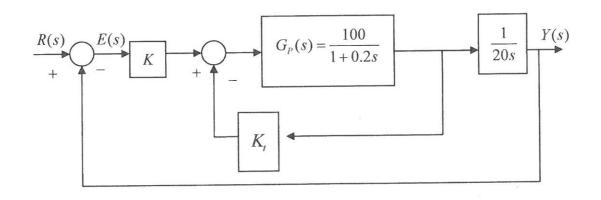


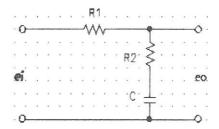
Fig. 2

3. (20%) Given the system
$$\frac{dx(t)}{dt} = Ax(t) + Bu(t)$$
, $y(t) = Cx(t)$ where $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

- (a) Determine the controllability and observability of the closed-loop system.
- (b) Let u(t) = -Kx(t), where $K = [k1 \ k2]$. Determine if and how controllability and observability of the closed-loop system are affected by the elements of K.

國立中正大學 102 學年度碩士班招生考試試題系所別:電機工程學系-電力與電能處理甲組 科目:控制系統

第1節


第2頁,共2頁

4. (10%) The transfer function of a unity feedback control system is

$$G(s) = \frac{K}{s(s+6.54)}$$

Find the resonance peak M_r , resonance frequency w_r , and bandwidth BW of the closed-loop system with K=21.39.

- 5. (30%) The forward-path transfer function of a unity-feedback control system is given in the following. $G(s) = \frac{K}{(s+3)^3}$
- (a) Construct the root loci of the characteristic equation of the closed-loop system for K > 0.
- (b) Apply the Nyquist criterion to determine the range of *K* for stability and check the answer with the Routh-Hurwitz criterion.
- (c) Find the value of K so that the phase margin of the system is 45° .
- 6. (10 %) Please prove that the following electric network is a phase-lag compensator $\frac{E_{\mathbf{o}}(s)}{E_{t}(s)} = K \frac{s+a}{s+b}, \ a > b > 0.$

