國立中央大學102學年度碩士班考試入學試題卷

			
所別: <u>太空科學研究所碩士班 不分組(一般生)</u> 太空科學研究所碩士班 不分組(在職生)	科目:電磁學	共/頁	第/頁
本科考試禁用計算器			

*請在試卷答案卷(卡)內作答

- 1. Given the electric potential $\Phi(r,\theta,\phi) = -Ar\cos\theta + \frac{B}{4\pi\epsilon_0}(\frac{1}{r} \frac{1}{R}) + \frac{AR^3}{r^2}\cos\theta$ in spherical coordinates (r,θ,ϕ) with constants A,B,R, and the permittivity of free space ϵ_0 ,
 - (a) Determine the electric field (5%)
 - (b) Sketch the electric field lines. (5%)
 - (c) Find the charge distribution that given rise to the potential. (5%)
 - (d) Find the electric interaction energy of the system. (5%)
- 2. A point charge q is placed at a point P in medium 1, which is at a distance d from the boundary of two semi-infinite homogeneous linear dielectrics of permittivities ε_1 and ε_2 .
 - (a) What are the boundary conditions for the potential and the electric field? (5%)
 - (b) Find the image charges.
- (5%)
- (c) Find the potential in region 1 of permittivity ϵ_1 . (5%)
- (d) Find the polarization in region 2 of permittivity ε_2 . (5%)
- 3. A small current circular coil of radius R lies in x-y plane with its center at the origin. It carries a stationary current I running counterclockwise as viewed from the positive z-axis. There is an external uniform magnetic field $\vec{B} = \frac{B_0}{\sqrt{2}}(\hat{x} + \hat{y})$ that is not generated by the coil of the current I.

Where B_0 is a constant and \hat{x} , \hat{y} are unit vectors along the x-axis and y-axis, respectively.

- (a) Find the magnetic field at points along z-axis. (5%)
- (b) Find the magnetic moment of the coil and express the result in (a) in terms of the magnetic moment. (5%)
- (c) Find the force acting on the coil.
- (5%)
- (d) Find the torque acting on the coil.
- (5%)
- 4. A uniformly magnetized sphere of radius R with the magnetization $\vec{M} = M_0 \hat{z}$ in z direction.
 - (a) Find the vector potential of the magnetic field outside the sphere. (5%)
 - (b) Find the magnetic field outside the sphere. (5%)
 - (c) Find the current distribution of a conducting sphere of radius R that produces the identical magnetic field in (b). (5%)
- 5. A rectangular wire of width w and length l in x-y plane is moving parallel to its width at a uniform velocity \vec{v} in y direction. An infinite long wire, carrying a stationary current l in x direction, coplanar with the wire, and parallel to its length is at a distance d from the nearest long side.
 - (a) Determine the electromotive force induced in the rectangular wire. (5%)
 - (b) Determine the mutual inductance of the system. (5%
 - (c) If the current carried in the infinite long wire is time dependent I(t), determine the electromotive force induced in the rectangular wire. (5%)
- 6. For the electromagnetic waves confined to the interior of a hollow pipe (or wave guide),
 - (a) Give the reasons for the fields inside the material of a hollow pipe are $\vec{E} = 0$ and $\vec{B} = 0$. (5%)
 - (b) Find the boundary conditions for the fields at the inner wall of a hollow pipe. (5%)

