編號：45
系所組別：光電科學與工程學系甲，乙組
考試科目：電磁學
考試日期：0224，節次：2
※ 考生請注意：本試題不可使用計算機 請勿在本試題紙上作答，否則不予計分
1．A practical application of electrostatic is in electrostatic separation of solids．As shown in Fig．1，it can be separated into its component by applying a uniform electric field．Assume the initial velocity and displacement are zero and take $E=500 \mathrm{~kW} / \mathrm{m}$ and $Q / m=9 \mu \mathrm{C} / \mathrm{kg}$ for both positively and negatively charged particles．After falling 80 cm ，the separation between the positively and negatively charged particles is \qquad ．(10%)（The gravitational constant $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）
2．Assume the electric charge density inside an atomic nucleus of radius a can be described by $\rho(r)=\rho_{0}\left(1-\frac{r^{2}}{a^{2}}\right)$ ，which exists in the region $0 \leq r \leq a$ ．Beyond the radius a ，the charge density is zero．
（a）The total charge Q is \qquad （5\％）
（b）The electric potential V inside the nucleus is \qquad （5\％）（c）The magnitude of the electric field maximal is at $r=$ \qquad ． 5% ）
3．Sketched in Fig． 2 is a $p n$ junction between two semiconducting half－spaces，doped p－type and n－type， respectively．The volume charge distribution in the semiconductor can be approximated the following function：

$$
\rho(x)=\left\{\begin{array}{cc}
-\rho_{0} e^{x / a}, & \text { for } x<0 \\
0, & \text { for } x=0, \\
\rho_{0} e^{-x / a}, & \text { for } x>0
\end{array}\right.
$$

Where ρ_{0} and a are positive constants．The permittivity of the semiconductor is ε ．
（a）The electric field intensity vector in the p－type region is \qquad （5\％），and the electric field intensity vector in the n－type region is \qquad ．（5\％）（b）From the end on the n－type side to the end on p－type side of the junction，the voltage between the ends of the semiconductor is \qquad ．（5\％）

4．A long coaxial cable has conductors of radii a and $b(a<b)$ and the dielectric permittivity ε ．The voltage between the cable conductors is V ．Find（a）the energy density is \qquad ．（5\％） （b）the energy per unit length is \qquad （5\％）

Figure 1

Figure 2
※ 考生請注意：本試題不可使用計算機
5．An electron is launched with a velocity $v=10^{4} \mathrm{~cm} / \mathrm{sec}$ at 45° to a uniform field $H=10^{4}$ oersteds．Describe quantitatively and completely the ensuing motion in one sentence．（Be sure to specify completely and quantitatively the exact motion．）（ 10% ）

6．A long straight wire of radius a has a circular hole of radius b parallel to the axis of the wire but displaced from the center by a distance c ．A current I flows in the wire and is uniformly distributed across the conductor．Find the magnetic field everywhere in space．（15\％）

7．Find the torque and the force between two circular loops of wire，carrying the same currents I ，and of the same radius R ，when they are located a distance L apart，with $L \gg R$ ， and with their axes parallel and the currents in the same direction．Express the torque and force in terms of the angle θ between their axes and their line of centers．（10\％）

8．Consider a plane electromagnetic wave of frequency ω normally incident on a nonmagnetic metallic surface with given conductivity σ ．
（a）Write down the partial differential equation for the magnetic field，appropriate to interior of the metal． Assume that ω is small enough that displacement current effects can be neglected．（5\％）
（b）State the boundary conditions for the tangential components \vec{E}^{t} and \vec{H}^{t} of the electric and magnetic fields at the surface．（5\％）
（c）Evaluate the（complex）surface impedance $Z(\sigma, \omega)$ defined by $\vec{E}^{t}=Z \vec{H}^{t} \times \hat{n}$ where \hat{n} is a unit vector normal to the surface．（5\％）

