編號: 43	國立成功大學 102 學年度碩士班招生考試試題	共2頁,第1頁
系所組別:	光電科學與工程學系乙組	
老試利日:	雷子舆	老时日期:0024,箭次:1

※ 考生請注意:本試題不可使用計算機

- 1. (15%) For an abrupt p-n junction diode with accepter and donor concentration of 10^{16} cm⁻³ and 10^{15} cm⁻³, respectively. The junction area is 400 μ m². The intrinsic carrier concentration is 10^{10} cm⁻³. ε_s of semiconductor is $11.7\varepsilon_0$, respectively. When the diode is biased at -5V, please calculate:
 - (a) the junction build-in voltage (3%)
 - (b) the depletion width (3%)
 - (c) the depletion width on each p and n side (3%)
 - (d) the stored charges on either side of junction (3%)
 - (e) the junction capacitance C_j. (3%)
- 2. (15%) Please find the Vo of the circuit shown in Figure 1.

3. (20%) For a circuit shown in **Figure 2**. All transistors have $|V_t|=1V$, $\lambda=0$, $\gamma=0$, $\mu_n C_{ox}=50 \mu A/V^2$, L= 1 μ m, and W =10 μ m.

- (a) Please find the V_2 and I_2 . (10%)
- (b) Please also find the V2 and I2 when the W of the Q3 and Q4 is $100\mu m$. (10%)

(背面仍有題目,請繼續作答)

編號: 43

系所組別:光電科學與工程學系乙組

考試科目:電子學

考試日期:0224・節次:1

※ 考生請注意:本試題不可使用計算機

4. (20%) Figure 3 shows a folded-cascode CMOS amplifier utilizing a simple current source Q_2 , supplying a current 2*I*, and a cascaded current-source (Q_4 , Q_5) supplying a current *I*. Assume, for simplicity, that all transistors have equal parameters transconductance g_m and output resistance r_0 .

- (a) Give approximate expressions for all the resistances indicated.
- (b) Find the amplifier output resistance R_0 .
- (c) Show that the short-circuit transconductance G_m is approximately equal to g_{m1} .
- (d) Find the overall voltage gain v_0/v_i and evaluate its value for the case $g_{m1} = 2mA/V$ amd $A_0=20$.

5. (15%) An NMOS differential amplifier employing equal drain resistors, $R_D = 47 \text{ k}\Omega$ has a differential gain A_d of 20 V/V.

- (a) What is the value of g_m for each of the two transistors?
- (b) If each of the two transistors is operating at an overdrive voltage $V_{OV} = 0.2V$, what must the value of I be?
- (c) For $v_{id} = 0$. What is the dc voltage across each R_D ?
- (d) If v_{id} is 20-mV peak-to-peak sine wave applied in a balanced manner but superimposed on the common-mode voltage V_{CM} = 0.5 V, what is the lowest value that V_{DD} must have to ensure saturation-mode operation for Q_1 and Q_2 at all times? Assume V_t = 0.5 V.

6. (15%) Design the inverter circuit in **Figure 4** to provide output high level $V_{OH} = 2$ V, output low level $V_{OL}=0.1$ V, and so that the current drawn from the supply in the low-output state is 20 μ A. The transistor has $V_t = 0.5$ V, $\mu_n C_{ox} = 100 \ \mu A/V^2$, and device parameter $\lambda = 0$. Specify the required values of V_{DD} , R_D , and W/L. How much power is drawn from the supply when the output is high? When the output is low?

