※ 考生請注意：本試題不可使用計算機

1．Illustrate the physical meaning：（ 5 points each）
1）．Linear polarization $E \& M$ wave；2）．Circular polarization $E \& M$ wave；3）．
Maxwell displacement current；4）．Faraday＇s induction law；5）．Phase velocity and group velocity of E\＆M wave
2．Calculate and answer the following questions according to classical Newton＇s law （non－relativity）：an electron moves circularly around a proton in a plane with a constant speed，the radius is $5 \times 10^{-11} \mathrm{~m}$ ．
1）．the speed of electron？2）．the revolution frequency？3）．the electric potential at the position of proton？4）．the magnetic induction field B at the position of proton？5）．the magnetic moment？（4 points each）
3．As figure 1 shown，an electric dipole $\vec{P}=e \vec{d}$ in vacuum．Find
1）．the electric potential at point O^{\prime}
2）．the electric field at point O^{\prime}
3）．the total electric flux across a closed surface covering this dipole
4）．the torque of this dipole oriented at an angle 45° to a uniform electric field \vec{E}
5）．the potential energy of this dipole oriented at an angle 45° to a uniform electric field \vec{E} ．（4 points each）
4．A capacitor as show in figure 2 ，half sphere with dielectric Σ_{1} ，half sphere with dielectric ε_{2} ．（5 points each）
1）．Find the capacitance C ．Sphere with radius Ross a metal ball
2）．If total charge Q placed on metal ball，find the electric field at point $p(1)$
3）．If total charge Q placed on metal ball，find the energy density at point $p(2)$
5．（5 points each）
1）．Find impedance Z of an AC current in a series RLC circuit
2）．Find the resonance driven frequency for an AC current in a series RLC circuit
3 ）．Find the energy stored in a capacitor（capacitance C and charge Q ）
4）．Find the energy stored in an inductor（inductance L and current I ）
Useful data：$m_{e}=9 \times 10^{-31} \mathrm{~kg} ; e=1.6 \times 10^{-19} \mathrm{C} ; \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

$$
\mu_{0}=1.26 \times 10^{-6} \mathrm{H} / \mathrm{m} ; \vec{p}=\left(\varepsilon_{r}-1\right) \vec{E} ; \vec{p}=\varepsilon_{0} \vec{E}+\vec{p}
$$

Figure 1

Figure 2

