編號: 186,191,20| 國立成功大學 102 學年度碩士班招生考試試題 共2頁,第1頁

系所組別:電機工程學系甲乙丙丁戊組,微電子工程研究所,電腦與通信工程研究所甲、丁組

考試科目:工程數學 考試日期:0223,節次:3

※ 考生請注意:本試題不可使用計算機

1. (20%) Solve the following initial value problems.

(a)
$$y' = \frac{2y}{x} + x^2 e^x$$
, $y(2) = 0$

(b)
$$y' + 3x^2y = xe^{-x^3}$$
, $y(0) = -1$

2. (13%) Solve the following initial value problem.

$$y'' + 3.7y' = 0$$
, $y(-2) = 4$, $y'(-2) = 0$

3. (17%) As we know, the Fourier series of $f(x) \forall x \in [L, -L]$ can be expressed as

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right).$$

Now please answer the following questions.

- (a) (3%) In what condition of f(x), we should use Fourier integral to express f(x) instead of Fourier series?
- (b) (7%) Under the condition you express in (a), derive the Fourier integral of f(x). Be sure to indicate the Fourier integral coefficients.
- (c) (7%) Similar to (b), derive the complex Fourier integral of f(x). Also, indicate the complex Fourier integral coefficients specifically.
- 4. (15%) Find the solution for the following problem.

$$u_{tt} = \theta u_{xx} + xt \ for \ -\infty < x < \infty, t > 0.$$

$$u(x,0) = x\cos(x), u_t(x,0) = \sin(x) \text{ for } -\infty < x < \infty$$

編號: 186,19/,20/ 國立成功大學 102 學年度碩士班招生考試試題

共2頁,第2頁

系所組別:電機工程學系甲乙丙丁戊組,微電子工程研究所,電腦與通信工程研究所甲、丁組

考試科目: 工程數學

考試日期:0223,節次:3

※ 考生請注意:本試題不可使用計算機

Note that
$$\frac{\partial u}{\partial t} = u_t$$
, $\frac{\partial u}{\partial x} = u_x$, $\frac{\partial^2 u}{\partial t^2} = u_{tt}$

5. (15%) Use the inversion formula and the residue theorem to evaluate the inverse of the given Fourier transform

$$\hat{f}(\omega) = \frac{1}{\omega^2 + 1}$$

6. (20%) Use the inversion formula and the residue theorem to evaluate the inverse of the given Laplace transform

$$F(s) = \frac{1}{\left(s-2\right)^3}$$