1．（ 20% ）
Discuss each of the following
（a）What is an inviscid flow？
（b）What is an irrotational flow？Can a viscous flow be irrotational？ Can an inviscid flow be rotational？
（c）What is a streamline，streakline，and a pathline？
（d）The velocity field for an irrotational，incompressible flow can be written in terms of a scalar potential．Give the mathematical expression for this relationship．
（e）How are the streamlines oriented relative the equipotential lines for a irrotational incompressible flow？

2．(20%)
A Venturi meter consists of a tapered constriction in a tube with pressure gauges to measure the pressures at positions（1）and（2）．

Show that the flow rate for a fluid going down the tube is

$$
Q=A_{2} \sqrt{\frac{2 \Delta p}{\rho\left[1-\left(A_{2} / A_{1}\right)^{2}\right]}}
$$

Where $\Delta \mathrm{p}$ is the pressure difference between points（1）and（2）and A_{1} and A_{2} are the cross sectional areas at points（1）and（2）and ρ is the fluid density．

3．(20%)
The drag，D，on a washer shaped plate placed normal to a stream of fluid can be expressed as $D=f\left(d_{1}, d_{2}, \mu, \rho, V\right)$
where d_{1} is the outer diameter，d_{2} is the inner diameter，V the fluid velocity，μ is the fluid viscosity，ρ is the fluid density．Some experiments are to be performed in a wind tunnel to determine the drag． What dimensionless parameters would you use to organize these data．

4．(20%)
Answer as indicated：
（a）Explain the physical meaning of
（i）Reynolds number and
（ii）Froude number．
（b）（i）Write down the Navier－Stokes equation in vector form．
（ii）Explain the physical meaning of each term in（i）．
5．(20%)
Consider two－dimensional laminar boundary－layer flow along a flat plate．
Assume the velocity profile in the boundary layer is sinusoidal， Find expressions for：

$$
\frac{u}{U}=\sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)
$$

（a）the rate of growth of δ as a function of x ．
（b）the displacement thickness，δ^{*} ，as a function of x ．
（c）the total friction force on a plate of length L and width b ．

