1．（ 20% ）
a）．Let

$$
f(z)=\frac{z}{\left(4+z^{2}\right)(2+z)},
$$

find the singular points and the corresponding residues．
b）．Compute

$$
\int_{-\infty}^{\infty} \frac{x}{\left(4+x^{2}\right)(2+x)} d x
$$

2．Consider an elliptic surface

$$
x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{4}=1
$$

a）．Find the point on the surface at which the normal line of the surface going through $(2,3,3) .(10 \%)$
b）．Write the equation representing the 2－D plane determined by z－axis and the normal line in a）．（ 10% ）

3．Solve the following equations（ 20% ）
a）．$(2 x+y) d x+(x+2 y) d y=0, y(0)=0$ ；
b）．$y^{\prime \prime \prime}(x)-3 y^{\prime \prime}(x)+3 y^{\prime}(x)-y(x)=6 e^{x}, y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=2$ ．
4．(20%)
a）．Prove that the eigenvalues of a real symmetric matrix are real．（ 10% ）
b）．Prove that the product of two unitary matrices is unitary．（ 5% ）
c）．Prove that the main diagonal elements of a hermitian matrix must be real．（ 5% ）

5．(20%)
a）．Find the Fourier series representation of

$$
f(x)=\frac{x^{2}}{2}, \quad-\pi<x<\pi
$$

b）．Find the sum of the following series

$$
1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\ldots
$$

