國立交通大學 102 學年度碩士班考試入學試題

科目:高等微積分(4031)

考試日期:102年2月3日 第3節

系所班別:應用數學系

組別:應數系甲組

第 頁,共 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相

(1) (16 points) Determine the convergency (absolutely convergent, conditionally convergent or divergent) of the following series.

(a) (8 points)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\log(n+1)}{n}$$
, (b) (8 points) $\sum_{n=1}^{\infty} (n^{1/n} - 1)$.

- (2) (20 points) Let M, N be sets and d_M, d_N be metrics on M, N and $A \subset M$. Suppose A is compact and $f: A \to N$ is continuous. Prove that
 - (a) (10 points) f(A) is compact;
 - (b) (10 points) f is uniformly continuous on A.
- (3) (14 points) Let $f:(a,b)\to\mathbb{R}$ be a differentiable function.
 - (a) (10 points) Prove that if f' > 0 on (a, b), then f(x) < f(y) for $x, y \in (a, b)$ and x < y.
 - (b) (4 points) Is the converse of (a) true? Prove or disprove it.
- (4) (20 points) Let

$$f(x) = \begin{cases} x + 2x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0 & x = 0. \end{cases}$$

- (a) (6 points) Find f'(0)?
- (b) (8 points) Is f locally invertible near 0? Justify your answer.
- (c) (6 points) Does this result contradict the inverse function theorem? Why?
- (5) (16 points) Let

$$f_n(x) = \begin{cases} 0, & \text{if } x < \frac{1}{n+1}, \\ \sin^2 \frac{\pi}{x}, & \text{if } \frac{1}{n+1} \le x \le \frac{1}{n}, \\ 0, & \text{if } x > \frac{1}{n}. \end{cases}$$

- (a) (8 points) Show that (f_n) converges to a continuous function.
- (b) (8 points) Does (f_n) converge uniformly?
- (6) (14 points)
 - (a) (8 points) Let f be a positive continuous function on [0,1] with maximum value M. Prove that

$$\lim_{n\to\infty} \left(\int_0^1 |f(x)|^n \ dx \right)^{1/n} = M.$$

(b) (6 points) If f is a continuous function on [0,1] with maximum value M and minimum value m. Evaluate

$$\lim_{n\to\infty} \left(\int_0^1 |f(x)|^n \ dx \right)^{1/n}$$

in terms of M and m.