B3 iR 102 % R LA SRR KA

8 FH SR EER001) FXBH1024£2848 £ 148
LAy BMEE % [A4 4 "

(AT ER] LT R A RE - 2 24RBE) BT srray oL LEm0 ! |

1. (3%) In the Knuth-Morris-Pratt string-pattern matching algorithm, we need a failure function.
Compute the failure function for the following pattern.

index {01123 (4!5|6|78

pattern |a|b a|a|blalalala

failure

Figure 1 Pattern matching

2 (5%) Inabinary tree, there may be many null pointers. We may use these pointers to point to
in-order predecessors and successors. These pointers are called thread pointers. Draw all the thread
pointers in the following binary tree.

(M))

']
Figure 2 Threaded binary tree
3 (5%) Assume there are only variables such as a, b, ¢, ... and binary operators, such as +, -, *, and /

in an arithmetic expression. The expression is fully parenthesized, that is, there is a pair of parentheses
for each operator. Examples are (((a+b)-c)/d), ((a+(c-(b-a))/d)-+f), ((((atb)+c)+d)y+e), ete.

Write a program that translated a fully-parenthesized expression into its prefix form. The input is a
correct, fully-parenthesized arithmetic expression, stored in a read-only array. This program can use 3
queues together with the usual stack pointers. You cannot use additional storage, such as arrays, except
a fixed number of simple temporary variables. In the program, you can only push, pop, examine the
contents of a cell, and compare two contents of two cells for equality. The program can scan the input
from left to right only once. It cannot store the input expression somewhere else for repeated
examinations. You can use C or Java or Pascal or other similar programming languages to write this
program. Your program should clearly show the underlying algorithm. Minor details and errors in the
program will be tolerated. In particular you need to explain your data structures with examples.

4 (5%) Assume each node contains a data, Ithread, rthread, Ichild, and rchild fields. Ithread and
rthread are Boolean fields. Ichild and rchild are pointers. If lthread is true, the Ichild field will be
considered as a left thread; otherwise, Ichild will point to the left child. Similarly for the rthread and

T RBALI02LEFHELHEEFRAANSERA

8 FHSEREE 00D EZAE10245 2848 £ 14
ENLEEY IR ke % 5 B %X &

[RTHEATER] xELHFAREEA ZEE5@E)AL E2maj a2 5ae! |

rchild fields. Consider the following algorithm for pre-order traversal of a binary tree using thread

pointers:

presuceinede) {

if node—lthread = false

L

2

3. then return node—lehild: *has left child®/
4 if node—rthread = false

5 it

then return node—srehild; Fhas vight child®/

G. f* in-order succossor *7

-
]

S ofind the in-order snecessor of the in-order suceessor

of the node’s in-order successor */

8. while node—s1rthread = true do
9. nende 1= node—rehild:

14, return node—srebild:

1.}

Figure 3 Tree traversal algorithm

Please fill in the missing line 6 with an assignment statement.

5 (5%) This problem contains five yes-no questions. Each question counts as 1 point. You do not
need to explain your answers.

(a) n?" +5- 3" = O(n*).

(b) 3n10%01 1+ 99nlogn = O(n!!).
(c) nlog(2n) = O(nlnn).

(d) n?log(5n) = O(n?).

(e) n"*logn = B(n?).

RyYx@EA2 10225 EBALELXAARERA

#8 ¢ AR Ex0001) X4 10242848 B 1&
RABER] AW %3 A4 % B

[FTEBER] SN FAMEER L25FE SRz mayadHitag! !

No partial credits will be given for question 6 ~ question 10. You either
answer all the sub-questions correctly and get full credits or get 0
credits for the whole guestion.

6.(5%) You have the following data structures A. list, B. hash table, and C. AVL tree at your disposal.
Assume you have a lot of data in the form of key-value pairs <keyl,valuel>, <key2,
value2>, ... ,<keyN,valueN>. Please answer the following questions by making your choices from
the three data structures:

(1). If your application requires frequent random access (i.e. retrieving the value for a given key),
using the data structure to store the data will give the longest average access time.

(2). Assume there is a total ordering of data, and your application requires frequent range queries to
the data (i.e. retrieving data with keys in the range [lower_bound, upper_bound]). Range query
to your data can be efficiently implemented with the data structure .

(3). If we want to emulate a priority queue, which of the three data structures will be the best

choice (i.e. both element addition and extract-max have to be efficient)

7.(5%) Figure 4 shows the two tree rotation operations coﬁn‘noniy used for balancing binary search trees.

right_rotate(Q)

(A O — @ (@
° o left_rotate(P} o o

Figure 4. Tree rotations

LH 8

Figure 5. Binary search tree T to be rotated

Given the binary search tree T in Figure 5, let’s apply the following tree rotations in sequence on T

left_rorate(6) — right rorate(4) — lefi_rorate(4)

BMyYXBRE N2 EFERLELANERAE

8 EREHEEE00D) £XAB102452848 £ 18
ARARHLR] ¢ A WIS % L A5 R

CRTHAMER] xASATHAHERA AR ERDOAAF B2 AANALHITRN !

(1). After the tree rotations, the parent of node 4 will be node
(2). After the tree rotations, the parent of node 7 will be node
Let’s apply the following additional tree rotations in sequence
left_rorate(1) — right_rorate(4) —> left_rorate(6) — right_rorate(3).

(3). After the seven tree rotations are applied to 7, an in-order traversal of T will output a sequence
of the tree nodes as

8.(5%) We have an open addressing hash table of size 7 to store integer keys, with hash function h(x) =
x mod 7. Assume we use linear probing for collision resolution and insert elements in the order 1, 15,
14,3,9,5,27.

(1). Draw the hash table after the insertions
(2). What is the worst-case time complexity for searching in a hash table of size N
(3). What is the best-case time complexity for searching in a hash table of size N

1 void swap{int &1, int &v2)}

<

B int t;

4 t = v2;

5 v2 = vl;

B vl = t;

7}

)

2 wvoid partition{int data[], int size, int pivot_v, int& low, int& high) {
i low = -1;

1i high = size;

it

13 for (int i = 2; 1 < high;)} {

14 if (data[i] > pivet_v) {

15 swap(data[i], data[++low]);
LA +Hi;

17 } else if (datali] < pivot_v) {
13 swap(data[i], data[--highl);
i¢ } else {

-8 ++1i;

X1 }

22 }

23}

x4

25 void xsort{int data[], int size)

6 |

27 int pivot, low, high;

28

22 if (size <=1)

EY] return;

21

EX pivot = size/Z;

33

24 partition(data, size, data[pivot}, low, high);
E xsort(data, lowsi);

k12 xsort{data+high, size - high)};

E

Figure 6. xsort function for sorting an integer array

BB RS 1022 FRREHREANERA

#8 - B ERE 000 FRAM102F2H4n8 F 185
RPFBER | A 4B 2 A% SR

(AT ER) K FEENFE M ERE SRARP) AL B2 A RAARTRE] |

9.(5%) Figure 6 presents the code for sorting an integer array. Assume that we make a call to the
xsort (..) function with

int data[] = {2,8,1,3,2,4,1,8,0,1};
int size = 10;

(1). After the call to xsort returns, the content of the data [] array will be

(You have to list all 10 elements of the data[] array sequentially, starting from data [0],
datafll,..etc.)

(2). How many times will the function partition be invoked? times.

(3). The worst-case time complexity of the xsort function for an input array data[] with size
elements is

BILBR2I02LEEELHEHERIANERHE

B FHEHEEERA00]) #HAMI02E2A848 18
L Kk 2 LA%T A

[ReT Mt Ei] *ASAMFLAHERE - 25RO AL BZMaREHLIETAG!]

10. (5%) Figure 7 presents the code for computing the number of connected components in an
undirected graph. In the code, the undirected graph is stored in the form of adjacency lists. The graph
has N vertices, which correspond to vertices {N] at Line 25. Each vertex is 2 tVertex structure
as given at Line 9~20. The function ConnectUndirected(vl, v2) isused for creating an
undirected edge between vertex v1 and vertex v2. The function NumberOfComponents () at Line
36 will return the number of connected components in the graph.

Please complete the code by filling the blanks in Figure 7. There are a total of three blanks at Line 30,
32, and 43 to be filled.

#define N 2
:
* struct tListNede
S
3 int v;
3 tListNode *pNext;

1;
¢ struct tvertex
1w {
i bool visited;
12 tListNode* pAdjList;
i3 tvertex() { pAdjList = 2; visited = false;}
= void Connect {int v}
e {
17 tlistNode *pNeighbor = new tlListNode;
18 pNeighbor-»v = v;
iz pNeighbor->pNext = pAdjList;
g pAdjList = pNeighbor;
1 }
22
EEE H
24
75 tVertex verticesiN];
26
27 wvoid DFS (int v)
28
g tListNode *pN;
36 vertices[v].visited = H
31
%2 for (pN = vertices[v].pAdjList; pN ;)
3% if (!vertices[pN-»>v].visited)} { DFS{ pN->v); }
34}

int NumberOfComponents ()

L8 int k;

i int cnt = 3;

4G

a1 for (k = 3; k < Nj k++) vertices[k].visited = false;
a2z for { k = 2; k ¢ N; k++) {

43 if (!vertices[k].visited) { }
dd }

45 return ¢nt;

46}

2§ void Connectundirected(int v1, int v2)

ig

e vertices[vi].Connect (v2); vertices[v2].Connect (v1);
5i }

Figure 7. Code for computing the number of connected companents of an undirected graph

MIXBARLI02LE5EALREAANE KA

#8 FRSEaEER00]) #HXA10242848 B 1 &
heraen) - BIWBL 27 @8, + 8 R

[ATEATER] *EEMHEAZIRA - £EAGRE) RS LM fEHAE RG]

In the following problem 11-15, fill in the blanks. Please try to keep all 10 answers on the same sheet of the
answer book. Each problem is worth 5 points. No partial credit will be given for only one correct blank.
However you do not have to provide any justification.

11.

2.

13.

14.

15.

(5%) Suppose that the amount of flow in the maximum flow from source to sink in the network G = (V, E)
is £, and that all capacities are integral. Suppose n = V| and m = [E|. How long would it take at most to find
this maximum flow using the Ford-Fulkerson algorithm? . Suppose that the minimum s-t cut in
the network G has x arcs. Suppose that one adds y units of capacity to each arc of G creating a
transformed network G'. The capacity of the minimum cut of G' is at most

(5%) The running time of Kruskal’s algorithm for a connected undirected weighted graph G = (V, E) is

. Suppose that all edge weights in a graph G are integers in the range from 1 to |V|]. How fast can
you make Kruskal’s algorithm run?

(5%) If some of the edge weights in a graph arc negative, the shortest path can be obtained using
Dijkstra’s algorithm by first adding a large constant C to each edge weight, where C is large enough that
every resulting edge weight will be nonnegative (True or False). The Bellman-Ford algorithm
is not suitable if the input graph has negative-weight edges (True or False).

(5%) Given a graph as below. Show the weight on the edge between Node x and Node y after reweighting
using Johnson’s algorithm. Show the fifth row of an adjacent matrix (with order of u, v, x, ¥,
z) after using the Floyd-Warshall Shortest Paths algorithm with the intermediate Node .

u v

(5%) You are the program chair of a conference! Part of your job is to assign papers to reviewers. You
have 6 papers P1, P2, P3, P4, PS5, P6 and 3 reviewers R1, R2, R3, Initially, cach reviewer constructs a list
of papers he is willing to review as followings: R1 = {P1, P3, P5, P6}, R2 = {P1, P2, P4}, R3 = {P1, P,
P3, P4, P5, P6). An assignment of papers to reviewers is valid if each paper is assigned to at least 2
distinct reviewers that are willing to review that paper. The maximum number of papers assigned to any
one reviewer should not be greater than 4. You would like to maximize the total number of papers which
are validly assigned. Please model this problem using a s-f flow network G = (V, E) (Draw a flow network
with capacity labeling). What is the maximum number of papers that can be validly
assigned?

RBAIZXBALIV2LEEmLERANERA

B EH R EeUEER(1001) £RXAY0252848 £1 8
LAY - T A 2 Prz2y 7

[RATEmtE#] xFLEFHAZERA S5 st grmaiatHiFag! !

16. (5%) Consider the multiplication of four matrices with dimensions in the following order:

10x11, 11x25, 25x40, 40x2. Find the optimal parenthesization of the above product and the minimum
number of scalar multiplications needed.

17. (5%) Consider the problem of finding a vector (X1, X2, X3, X4, Xs) satisfying the following constraints

such that x; + X2 + X3 + X4 + X5 is maximized, where x; <0 for i=1,...,5. What are the maximum value and
the corresponding vector?

Xi-%<1,
X1- X551,
X2-%X5<1,
X3- X1 < 15,
X4-x1<4,
X4-x3<-1,
Xs5-X3< -3,
Xs- x4 <0.

18. Consider a set of 6 nodes 1, 2, 3, 4, 5, 6 and their corresponding weights: 2, 3, 4, 4, 5, 6.
(a) (5%) Build a binary tree with these nodes appearing in the leaves such that the maximum of
w[i] x (1/2)*d[i] is minimized, where w[i] is the weight and d[i] is the depth of node i in the tree. Note
that the root has depth 0. What is the optimal value?
(b) (10%) Give a greedy algorithm for N nodes and explain your idea.

	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037

