題號: 406

節次:

國立臺灣大學 102 學年度碩士班招生考試試題

科目:工程數學(C)

406 共 2 頁之第

問題 1 至 10 中總共有 20 個空格((A1),(A2),...,(A19),(A20)) 。請根據題意,將適當的數字、向量、矩陣、函 數、集合、符號或文字等作答於答案卷。例如:(A1)=20,(A2)=5x+6 等。

- 1. (5%) The solution f(t) to the differential equation $tf'-(t+2)f=-2t^2-2t$ can be expressed as the linear combination of the following two terms: t and (A1)(A1) = ? (5 points)
- 2. (5%)If $L[f(t)] = \frac{s}{s^4 + a^4}$ with a > 0, then f(t) = (A2)(A2) = ? (5 points)
- 3. (5%) The solution to the initial value problem $f''-3f'+2f=4t+e^{3t}$, f(0)=-f'(0)=1 can be written as f(t) = (A3)(A3) = ? (5 points)
- 4. (10%) A partial differential equation of the form $\nabla^2 f(\vec{r}) = h(\vec{r})$ is called the Poisson's equation, where $f(\vec{r})$ is the unknown "potential" function to be determined and $h(\vec{r})$ is a known "source" function (all in the spherical coordinate system). The most common boundary condition applied to this equation is that $f(\vec{r})$ is zero as $|\vec{r}| \to \infty$. Provided that $g(\vec{r}) = \frac{1}{4\pi |\vec{r}|}$ is the solution to the equation $\nabla^2 g(\vec{r}) = \delta(\vec{r})$, then the solution to the equation $\nabla^2 G(\vec{r}) = \delta(\vec{r} - \vec{r_0})$ can be expressed as $G(\vec{r}) = (A4)$. Besides, since Poisson's equation is linear in both the potential and the source terms, the solution to its most general form $\nabla^2 f(\vec{r}) = h(\vec{r})$ could be written as (A4) = ? (3 points). (A5) = ? (7 points) $f(\vec{r}) = | (A5) |$
- 5. (10%)The solution of the Bessel's function of first kind with order 1/2 is expressed as $J_{1/2}(x) = \left(\frac{x}{2}\right)^{\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma\left(\frac{3}{2}+k\right)} \left(\frac{x}{2}\right)^{2k}, \text{ where } \Gamma\left(\frac{3}{2}+k\right) = \int_0^\infty t^{\frac{1}{2}+k} e^{-t} dt \text{ and } \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}. \text{ The solution can be}$ rewritten as $J_{1/2}(x) = (A6) \sin x$. (A6) =? (10 points)
- 6. (5%) The solution of the Bernoulli's equation $y' \frac{6}{17}y \sin x = \frac{5}{32}x^4y^2$, y(0) = 1, y(x), has a singular point at x = (A7) (Hint: find y(x) when y >> 1)
- 7. (10%) The solution of the diffusion equation $Dy'' vy' \alpha y = M\delta(x)$ is expressed as $y(x) = (A8) \times e^{(A9)x}$ when x > 0. (A8) = ? (5 points)
- 8. (20%) Given two 3×3 matrices A and B, assume they can be diagonalized by the same invertible matrix P such

that $M_1 = P^{-1}AP$ and $M_2 = P^{-1}BP$ are diagonal matrices. Let $A = \begin{bmatrix} 3 & -2 & 0 \\ 1 & 3 & -3 \\ 1 & A & -A \end{bmatrix}$, $M_1 = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_1 \end{bmatrix}$ with

$$\lambda_1 \ge \lambda_2 \ge \lambda_3$$
, and $M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. Let $M_1 = (A10)$, $P = (A11)$, $\det(B) = (A12)$, $AB - BA = (A13)$

$$(A10) = ? (5 \text{ points}) \qquad (A11) = ? (5 \text{ points}) \qquad (A12) = ? (5 \text{ points})$$

見背面

題號: 406

國立臺灣大學 102 學年度碩士班招生考試試題

科目:工程數學(C)

題號: 406

節次: 6

共 2 頁之第 2 頁

9. (5%) Let u and v be two vectors with norms ||u|| = 4 and ||v|| = 7, respectively, in some inner product space. Let $\langle 2u + v, 2u - v \rangle = \boxed{(A14)}$

10. (25%) The field Z_2 consists of two elements 0 and 1 with the operations of addition(+) and multiplication(\bullet) defined by the following equations.

0+0=0, 0+1=1+0=1, 1+1=0;

 $0 \bullet 0 = 0$, $0 \bullet 1 = 1 \bullet 0 = 0$, $1 \bullet 1 = 1$.

Let V be the 3-tuple vector space of $(Z_2)^3$, i.e. if $v \in V$ then $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ in which $v_i \in Z_2$ for i = 1,2,3.

Let M be the 3 by 3 matrices defined on Z_2 , i.e. if $T \in M$ then $T = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$ in which $t_{ij} \in Z_2$ for

i = 1,2,3 and j = 1,2,3

(a) The zero vector in V is (A15)

(A15) =? (2 points)

(b) Let $v \in V$ and $v = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, its additive inverse is (A16)

(A16) =? (3 points)

(c) Let $T \in M$ and $T = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $T^{-1} = [A17]$.

(A17) =? (5 points)

(d) Let $U \in M$ and $U = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ the eigenvalue set of U is A18; the associated eigenvector set is A19.

(A18) =? (5 points)

(A19) =? (5 points)

(e) Let L be the linear transformation from V to V, and $L\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ a+b \\ a+b+c \end{bmatrix}$

Assume $B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ is the basis of V. Let $[L]_B = (A20)$ be the matrix representation of L with

respective to B.

(A20) =? (5 points)

試題隨卷繳回