編號:

國立成功大學一○一學年度碩士班招生考試試題

共 / 頁,第/頁

系所組別: 機械工程學系甲、乙、丙、丁、戊組

考試科目: 工程數學

考試日期:0225、節次:3

Solve the linear differential system

$$(20\%)$$

$$\frac{dx}{dt} + 2x + \frac{dy}{dt} + 6y = e^{-t}$$

$$2\frac{\mathrm{d}x}{\mathrm{d}t} + 3x + 3\frac{\mathrm{d}y}{\mathrm{d}t} + 8y = t^2$$

Solve the differential equation following heat conduction problem (15%)

$$\frac{d^{3}y}{dt^{3}} + 3\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt} = \delta(t-1)$$

with the boundary conditions

$$\frac{d^2y}{dt^2}(0) = \frac{dy}{dt}(0) = 0$$
 and $y(2) = 1$

3. For matrix $A = \begin{bmatrix} 2 & -1 & 5 & 0 \\ 3 & 0 & -2 & 0 \\ 1 & 4 & 0 & 0 \\ 2 & 2 & 2 & 2 \end{bmatrix}$,

(a) det A = ? (2%) (b) What is the rank of A ? (2%) (c) What is the inverse of A?(6%)

- Let A be a symmetric matrix with real entries. Show that the eigenvalues of A are real.(10%)
- What is the Gauss divergence theorem?(5%) If $\mathbf{F} = xy \mathbf{i} + y^2 z \mathbf{j} + z^3 \mathbf{k}$, evaluate $\iint_S (\mathbf{F} \cdot \mathbf{n} \, dS)$, where S is the unit cube defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1.(5\%)$

6. (20%) 求解 (a)
$$2^i$$
; (b) $\int_0^\infty \frac{x^{1/3}}{x(x^2+1)} dx$

7. (15%) 求解
$$\begin{cases} \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}; & \text{for } 0 < x < \infty, t > 0 \\ u(0,t) = 0; & \text{for } t \ge 0 \\ u(x,0) = f(x); & \text{for } 0 < x < \infty \end{cases}$$