題號: 314 國立臺灣大學 102 學年度碩士班招生考試試題

科目:統計學(D)

題號: 314 基 〉 百之第 : 百

1. Please show the probability density function, the support, as well as the mean and variance, of the following distributions

- (1). A binomial distribution with n trials and the probability of success p (5%)
- (2). A Poisson distribution with intensity λ (5%)
- (3). A chi-square (χ^2) distribution with n degrees of freedom (10%)
- 2. Let $X \sim N(\mu, \sigma^2)$, and $X_1, X_2, ..., X_n$ be a random sample of size n drawn from X. Let \overline{X} and S^2 be the mean and variance of the sample, respectively. Let \overline{x} and S^2 be the observed mean and variance of the sample, respectively. Please
 - (1). calculate the covariance of \overline{X} and S^2 (5%)
 - (2). derive the sampling distribution of \overline{X} (5%)
 - (3). derive the sampling distribution of S^2 (5%)
 - (4). derive the sampling distribution of $\frac{\overline{X} \mu}{\sigma_{\overline{X}}}$, where $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$ (5%)
 - (5). derive the sampling distribution of $\frac{\overline{X} \mu}{S_{\overline{X}}}$, where $S_{\overline{X}}^2 = \frac{S^2}{n}$ (5%)
 - (6). construct a test for testing H_0 : $\mu = \mu_0$ vs. H_A : $\mu \neq \mu_0$ with a significance level of α when σ^2 is known (5%)
 - (7). construct a test for testing H_0 : $\mu = \mu_0$ vs. H_A : $\mu \neq \mu_0$ with a significance level of α when σ^2 is **unknown** (5%)
- 3. Let X be a random variable with a finite mean and variance, and $X_1, X_2, ..., X_n$ be a random sample of size n drawn from X. Let \overline{X} be the mean of the sample. Please derive the **limiting distribution** of $\frac{\overline{X} \mu}{\sigma_{\overline{X}}}$, as $n \to \infty$, and please briefly explain why (5%)

題號: 314

國立臺灣大學 102 學年度碩士班招生考試試題

科目:統計學(D)

題號: 314 共 🔾 頁之第 📐 頁

節次: 3

4. Let X be a t distribution with n degrees of freedom. Please find the limiting distribution of X as $n \to \infty$, and please briefly explain why (5%)

- 5. Please briefly explain what the Gauss-Markov theorem is in linear regression analysis (15%)
- 6. Let the model of a complete randomized design be $Y_{ij} = \mu_i + \varepsilon_{ij}$, with i = 1, 2, ..., a, j = 1, 2, ..., n, and $\varepsilon_{ij} \sim N(0, \sigma^2)$. Please
 - (1). state the null and alternative hypotheses (5%)
 - (2). find the best estimators for μ_i (5%)
 - (3). derive the expected values of *MSTreat* and *MSE*, which are the mean squares of the treatments and errors, respectively, and the sampling distribution of $\frac{MSTreat}{MSE}$ under the null hypothesis (10%)